mlpack
|
#include <mlpack/prereqs.hpp>
#include <mlpack/methods/amf/update_rules/nmf_mult_dist.hpp>
#include <mlpack/methods/amf/update_rules/nmf_als.hpp>
#include <mlpack/methods/amf/update_rules/svd_batch_learning.hpp>
#include <mlpack/methods/amf/update_rules/svd_incomplete_incremental_learning.hpp>
#include <mlpack/methods/amf/update_rules/svd_complete_incremental_learning.hpp>
#include <mlpack/methods/amf/init_rules/random_init.hpp>
#include <mlpack/methods/amf/init_rules/random_acol_init.hpp>
#include <mlpack/methods/amf/termination_policies/simple_residue_termination.hpp>
#include <mlpack/methods/amf/termination_policies/simple_tolerance_termination.hpp>
#include "amf_impl.hpp"
Go to the source code of this file.
Classes | |
class | mlpack::amf::AMF< TerminationPolicyType, InitializationRuleType, UpdateRuleType > |
This class implements AMF (alternating matrix factorization) on the given matrix V. More... | |
Namespaces | |
mlpack | |
Linear algebra utility functions, generally performed on matrices or vectors. | |
mlpack::amf | |
Alternating Matrix Factorization. | |
Typedefs | |
typedef amf::AMF< amf::SimpleResidueTermination, amf::RandomAcolInitialization<>, amf::NMFALSUpdate > | mlpack::amf::NMFALSFactorizer |
template<typename MatType = arma::mat> | |
using | mlpack::amf::SVDBatchFactorizer = amf::AMF< amf::SimpleResidueTermination, amf::RandomAcolInitialization<>, amf::SVDBatchLearning > |
Convenience typedefs. More... | |
template<class MatType = arma::mat> | |
using | mlpack::amf::SVDIncompleteIncrementalFactorizer = amf::AMF< amf::SimpleResidueTermination, amf::RandomAcolInitialization<>, amf::SVDIncompleteIncrementalLearning > |
SVDIncompleteIncrementalFactorizer factorizes given matrix V into two matrices W and H by incomplete incremental gradient descent. More... | |
template<class MatType = arma::mat> | |
using | mlpack::amf::SVDCompleteIncrementalFactorizer = amf::AMF< amf::SimpleResidueTermination, amf::RandomAcolInitialization<>, amf::SVDCompleteIncrementalLearning< MatType > > |
SVDCompleteIncrementalFactorizer factorizes given matrix V into two matrices W and H by complete incremental gradient descent. More... | |
Alternating Matrix Factorization
The AMF (alternating matrix factorization) class, from which more commonly known techniques such as incremental SVD, NMF, and batch-learning SVD can be derived.
mlpack is free software; you may redistribute it and/or modify it under the terms of the 3-clause BSD license. You should have received a copy of the 3-clause BSD license along with mlpack. If not, see http://www.opensource.org/licenses/BSD-3-Clause for more information.