14 #ifndef MLPACK_METHODS_ANN_LOSS_FUNCTIONS_EMPTY_LOSS_IMPL_HPP 15 #define MLPACK_METHODS_ANN_LOSS_FUNCTIONS_EMPTY_LOSS_IMPL_HPP 23 template<
typename InputDataType,
typename OutputDataType>
29 template<
typename InputDataType,
typename OutputDataType>
30 template<
typename PredictionType,
typename TargetType>
32 const PredictionType& ,
const TargetType& )
37 template<
typename InputDataType,
typename OutputDataType>
38 template<
typename PredictionType,
typename TargetType,
typename LossType>
40 const PredictionType& ,
41 const TargetType& target,
Linear algebra utility functions, generally performed on matrices or vectors.
Definition: cv.hpp:1
void Backward(const PredictionType &prediction, const TargetType &target, LossType &loss)
Ordinary feed backward pass of a neural network.
Definition: empty_loss_impl.hpp:39
EmptyLoss()
Create the EmptyLoss object.
Definition: empty_loss_impl.hpp:24
double Forward(const PredictionType &input, const TargetType &target)
Computes the Empty loss function.
Definition: empty_loss_impl.hpp:31