12 #ifndef MLPACK_CORE_CV_METRICS_MSE_HPP 13 #define MLPACK_CORE_CV_METRICS_MSE_HPP 36 template<
typename MLAlgorithm,
typename DataType,
typename ResponsesType>
37 static double Evaluate(MLAlgorithm& model,
39 const ResponsesType& responses);
The MeanSquaredError is a metric of performance for regression algorithms that is equal to the mean s...
Definition: mse.hpp:25
static const bool NeedsMinimization
Information for hyper-parameter tuning code.
Definition: mse.hpp:45
Linear algebra utility functions, generally performed on matrices or vectors.
Definition: cv.hpp:1
static double Evaluate(MLAlgorithm &model, const DataType &data, const ResponsesType &responses)
Run prediction and calculate the mean squared error.
Definition: mse_impl.hpp:19
Include all of the base components required to write mlpack methods, and the main mlpack Doxygen docu...