12 #ifndef MLPACK_METHODS_SPARSE_AUTOENCODER_SPARSE_AUTOENCODER_IMPL_HPP 13 #define MLPACK_METHODS_SPARSE_AUTOENCODER_SPARSE_AUTOENCODER_IMPL_HPP 21 template<
typename OptimizerType>
23 const size_t visibleSize,
24 const size_t hiddenSize,
28 OptimizerType optimizer) :
29 visibleSize(visibleSize),
30 hiddenSize(hiddenSize),
42 const double out = optimizer.Optimize(encoderFunction, parameters);
45 Log::Info <<
"SparseAutoencoder::SparseAutoencoder(): final objective of " 46 <<
"trained model is " << out <<
"." << std::endl;
49 template<
typename OptimizerType,
typename... CallbackTypes>
51 const size_t visibleSize,
52 const size_t hiddenSize,
56 OptimizerType optimizer,
57 CallbackTypes&&... callbacks) :
58 visibleSize(visibleSize),
59 hiddenSize(hiddenSize),
71 const double out = optimizer.Optimize(encoderFunction, parameters,
75 Log::Info <<
"SparseAutoencoder::SparseAutoencoder(): final objective of " 76 <<
"trained model is " << out <<
"." << std::endl;
static void Start(const std::string &name)
Start the given timer.
Definition: timers.cpp:28
Linear algebra utility functions, generally performed on matrices or vectors.
Definition: cv.hpp:1
This is a class for the sparse autoencoder objective function.
Definition: sparse_autoencoder_function.hpp:26
const arma::mat & GetInitialPoint() const
Return the initial point for the optimization.
Definition: sparse_autoencoder_function.hpp:86
static void Stop(const std::string &name)
Stop the given timer.
Definition: timers.cpp:36
SparseAutoencoder(const arma::mat &data, const size_t visibleSize, const size_t hiddenSize, const double lambda=0.0001, const double beta=3, const double rho=0.01, OptimizerType optimizer=OptimizerType())
Construct the sparse autoencoder model with the given training data.
Definition: sparse_autoencoder_impl.hpp:22
static MLPACK_EXPORT util::PrefixedOutStream Info
Prints informational messages if –verbose is specified, prefixed with [INFO ].
Definition: log.hpp:84