13 #ifndef MLPACK_METHODS_RL_TRAINING_CONFIG_HPP 14 #define MLPACK_METHODS_RL_TRAINING_CONFIG_HPP 25 targetNetworkSyncInterval(100),
31 doubleQLearning(
false),
32 noisyQLearning(
false),
42 size_t updateInterval,
43 size_t targetNetworkSyncInterval,
45 size_t explorationSteps,
56 numWorkers(numWorkers),
57 updateInterval(updateInterval),
58 targetNetworkSyncInterval(targetNetworkSyncInterval),
60 explorationSteps(explorationSteps),
63 gradientLimit(gradientLimit),
64 doubleQLearning(doubleQLearning),
65 noisyQLearning(noisyQLearning),
66 isCategorical(isCategorical),
85 {
return targetNetworkSyncInterval; }
138 double VMin()
const {
return vMin; }
140 double&
VMin() {
return vMin; }
143 double VMax()
const {
return vMax; }
145 double&
VMax() {
return vMax; }
148 double Rho()
const {
return rho; }
150 double&
Rho() {
return rho; }
165 size_t updateInterval;
171 size_t targetNetworkSyncInterval;
184 size_t explorationSteps;
202 double gradientLimit;
208 bool doubleQLearning;
size_t & UpdateInterval()
Modify the update interval.
Definition: training_config.hpp:81
bool DoubleQLearning() const
Get the indicator of double q-learning.
Definition: training_config.hpp:118
size_t TargetNetworkSyncInterval() const
Get the interval for syncing target network.
Definition: training_config.hpp:84
Linear algebra utility functions, generally performed on matrices or vectors.
Definition: cv.hpp:1
size_t NumWorkers() const
Get the amount of workers.
Definition: training_config.hpp:74
double & VMin()
Modify the minimum value for support.
Definition: training_config.hpp:140
double GradientLimit() const
Get the limit of update gradient.
Definition: training_config.hpp:113
double VMax() const
Get the maximum value for support.
Definition: training_config.hpp:143
size_t & NumWorkers()
Modify the amount of workers.
Definition: training_config.hpp:76
double & Discount()
Modify the discount rate for future reward.
Definition: training_config.hpp:110
size_t UpdateInterval() const
Get the update interval.
Definition: training_config.hpp:79
double StepSize() const
Get the step size of the optimizer.
Definition: training_config.hpp:103
double VMin() const
Get the minimum value for support.
Definition: training_config.hpp:138
double Rho() const
Get the rho value for sac.
Definition: training_config.hpp:148
size_t StepLimit() const
Get the maximum steps of each episode.
Definition: training_config.hpp:90
double & StepSize()
Modify the step size of the optimizer.
Definition: training_config.hpp:105
size_t & TargetNetworkSyncInterval()
Modify the interval for syncing target network.
Definition: training_config.hpp:87
size_t & StepLimit()
Modify the maximum steps of each episode.
Definition: training_config.hpp:95
bool NoisyQLearning() const
Get the indicator of noisy q-learning.
Definition: training_config.hpp:123
Definition: training_config.hpp:19
bool & DoubleQLearning()
Modify the indicator of double q-learning.
Definition: training_config.hpp:120
double & Rho()
Modify the rho value for sac.
Definition: training_config.hpp:150
bool & NoisyQLearning()
Modify the indicator of double q-learning.
Definition: training_config.hpp:125
double & GradientLimit()
Modify the limit of update gradient.
Definition: training_config.hpp:115
size_t & ExplorationSteps()
Modify the exploration steps.
Definition: training_config.hpp:100
double Discount() const
Get the discount rate for future reward.
Definition: training_config.hpp:108
bool & IsCategorical()
Modify the indicator of categorical q-learning.
Definition: training_config.hpp:130
size_t ExplorationSteps() const
Get the exploration steps.
Definition: training_config.hpp:98
bool IsCategorical() const
Get the indicator of categorical q-learning.
Definition: training_config.hpp:128
double & VMax()
Modify the maximum value for support.
Definition: training_config.hpp:145
size_t AtomSize() const
Get the number of atoms.
Definition: training_config.hpp:133
size_t & AtomSize()
Modify the number of atoms.
Definition: training_config.hpp:135