CoolProp
Public Member Functions | Protected Member Functions | Protected Attributes | List of all members
CoolProp::IncompressibleBackend Class Reference
Inheritance diagram for CoolProp::IncompressibleBackend:
Inheritance graph
[legend]
Collaboration diagram for CoolProp::IncompressibleBackend:
Collaboration graph
[legend]

Public Member Functions

std::string backend_name (void)
 Get a string representation of the backend - for instance "HelmholtzEOSMixtureBackend" for the core mixture model in CoolProp. More...
 
 IncompressibleBackend (IncompressibleFluid *fluid)
 The instantiator. More...
 
 IncompressibleBackend (const std::string &fluid_name)
 The instantiator. More...
 
 IncompressibleBackend (const std::vector< std::string > &component_names)
 The instantiator. More...
 
bool using_mole_fractions (void)
 
bool using_mass_fractions (void)
 
bool using_volu_fractions (void)
 
void update (CoolProp::input_pairs input_pair, double value1, double value2)
 Updating function for incompressible fluid. More...
 
std::string fluid_param_string (const std::string &ParamName)
 Return a string from the backend for the mixture/fluid - backend dependent - could be CAS #, name, etc.
 
bool clear ()
 Clear all the cached values. More...
 
void set_reference_state (double T0=20+273.15, double p0=101325, double x0=0.0, double h0=0.0, double s0=0.0)
 Update the reference values and clear the state. More...
 
void set_mole_fractions (const std::vector< CoolPropDbl > &mole_fractions)
 Set the mole fractions. More...
 
const std::vector< CoolPropDbl > & get_mole_fractions (void)
 Get the mole fractions of the fluid.
 
void set_mass_fractions (const std::vector< CoolPropDbl > &mass_fractions)
 Set the mass fractions. More...
 
void set_volu_fractions (const std::vector< CoolPropDbl > &volu_fractions)
 Set the volume fractions. More...
 
void check_status ()
 Check if the mole fractions have been set, etc.
 
double rhomass (void)
 We have to override some of the functions from the AbstractState. More...
 
double hmass (void)
 Return the mass enthalpy in J/kg.
 
double smass (void)
 Return the molar entropy in J/mol/K.
 
double umass (void)
 Return the molar internal energy in J/mol.
 
double cmass (void)
 Return the mass constant pressure specific heat in J/kg/K.
 
double drhodTatPx (void)
 
double dsdTatPx (void)
 
double dhdTatPx (void)
 
double dsdTatPxdT (void)
 
double dhdTatPxdT (void)
 
double dsdpatTx (void)
 
double dhdpatTx (void)
 
double T_ref (void)
 Return the temperature in K.
 
double p_ref (void)
 Return the pressure in Pa.
 
double x_ref (void)
 Return the composition.
 
double h_ref (void)
 Return the mass enthalpy in J/kg.
 
double s_ref (void)
 Return the molar entropy in J/mol/K.
 
double hmass_ref (void)
 Return the mass enthalpy in J/kg.
 
double smass_ref (void)
 Return the molar entropy in J/mol/K.
 
CoolPropDbl DmassP_flash (CoolPropDbl rhomass, CoolPropDbl p)
 These functions should be protected, but that requires new tests. More...
 
CoolPropDbl HmassP_flash (CoolPropDbl hmass, CoolPropDbl p)
 Calculate T given pressure and enthalpy. More...
 
CoolPropDbl PSmass_flash (CoolPropDbl p, CoolPropDbl smass)
 Calculate T given pressure and entropy. More...
 
CoolPropDbl calc_rhomass (void)
 
CoolPropDbl calc_cmass (void)
 
CoolPropDbl calc_cpmass (void)
 
CoolPropDbl calc_cvmass (void)
 
CoolPropDbl calc_viscosity (void)
 Using this backend, calculate the viscosity in Pa-s.
 
CoolPropDbl calc_conductivity (void)
 Using this backend, calculate the thermal conductivity in W/m/K.
 
CoolPropDbl calc_T_freeze (void)
 
CoolPropDbl calc_melting_line (int param, int given, CoolPropDbl value)
 Calculate T given pressure and internal energy **. More...
 
CoolPropDbl calc_umass (void)
 
CoolPropDbl calc_hmass (void)
 ... and continue with the ones that depend on reference conditions.
 
CoolPropDbl calc_smass (void)
 
CoolPropDbl raw_calc_hmass (double T, double p, double x)
 Functions that can be used with the solver, they miss the reference values!
 
CoolPropDbl raw_calc_smass (double T, double p, double x)
 
CoolPropDbl calc_Tmax (void)
 Constants from the fluid object.
 
CoolPropDbl calc_Tmin (void)
 Using this backend, calculate the minimum temperature in K.
 
CoolPropDbl calc_fraction_min (void)
 Get the minimum fraction (mole, mass, volume) for incompressible fluid.
 
CoolPropDbl calc_fraction_max (void)
 Get the maximum fraction (mole, mass, volume) for incompressible fluid.
 
std::string calc_name (void)
 Using this backend, get the name of the fluid.
 
std::string calc_description (void)
 Using this backend, get the description of the fluid.
 
- Public Member Functions inherited from CoolProp::AbstractState
void set_T (CoolPropDbl T)
 Set the internal variable T without a flash call (expert use only!)
 
virtual void set_reference_stateS (const std::string &reference_state)
 Set the reference state based on a string representation. More...
 
virtual void set_reference_stateD (double T, double rhomolar, double hmolar0, double smolar0)
 Set the reference state based on a thermodynamic state point specified by temperature and molar density. More...
 
std::vector< CoolPropDbl > mole_fractions_liquid (void)
 Get the mole fractions of the equilibrium liquid phase.
 
std::vector< double > mole_fractions_liquid_double (void)
 Get the mole fractions of the equilibrium liquid phase (but as a double for use in SWIG wrapper)
 
std::vector< CoolPropDbl > mole_fractions_vapor (void)
 Get the mole fractions of the equilibrium vapor phase.
 
std::vector< double > mole_fractions_vapor_double (void)
 Get the mole fractions of the equilibrium vapor phase (but as a double for use in SWIG wrapper)
 
virtual const std::vector< CoolPropDbl > get_mass_fractions (void)
 Get the mass fractions of the fluid.
 
virtual void update_with_guesses (CoolProp::input_pairs input_pair, double Value1, double Value2, const GuessesStructure &guesses)
 Update the state using two state variables and providing guess values Some or all of the guesses will be used - this is backend dependent.
 
virtual bool available_in_high_level (void)
 A function that says whether the backend instance can be instantiated in the high-level interface In general this should be true, except for some other backends (especially the tabular backends) To disable use in high-level interface, implement this function and return false.
 
std::vector< std::string > fluid_names (void)
 Return a vector of strings of the fluid names that are in use.
 
virtual const double get_fluid_constant (std::size_t i, parameters param) const
 Get a constant for one of the fluids forming this mixture. More...
 
virtual void set_binary_interaction_double (const std::string &CAS1, const std::string &CAS2, const std::string &parameter, const double value)
 Set binary mixture floating point parameter (EXPERT USE ONLY!!!)
 
virtual void set_binary_interaction_double (const std::size_t i, const std::size_t j, const std::string &parameter, const double value)
 Set binary mixture floating point parameter (EXPERT USE ONLY!!!)
 
virtual void set_binary_interaction_string (const std::string &CAS1, const std::string &CAS2, const std::string &parameter, const std::string &value)
 Set binary mixture string parameter (EXPERT USE ONLY!!!)
 
virtual void set_binary_interaction_string (const std::size_t i, const std::size_t j, const std::string &parameter, const std::string &value)
 Set binary mixture string parameter (EXPERT USE ONLY!!!)
 
virtual double get_binary_interaction_double (const std::string &CAS1, const std::string &CAS2, const std::string &parameter)
 Get binary mixture double value (EXPERT USE ONLY!!!)
 
virtual double get_binary_interaction_double (const std::size_t i, const std::size_t j, const std::string &parameter)
 Get binary mixture double value (EXPERT USE ONLY!!!)
 
virtual std::string get_binary_interaction_string (const std::string &CAS1, const std::string &CAS2, const std::string &parameter)
 Get binary mixture string value (EXPERT USE ONLY!!!)
 
virtual void apply_simple_mixing_rule (std::size_t i, std::size_t j, const std::string &model)
 Apply a simple mixing rule (EXPERT USE ONLY!!!)
 
virtual void set_cubic_alpha_C (const size_t i, const std::string &parameter, const double c1, const double c2, const double c3)
 Set the cubic alpha function's constants:
 
virtual void set_fluid_parameter_double (const size_t i, const std::string &parameter, const double value)
 Set fluid parameter (currently the volume translation parameter for cubic)
 
virtual double get_fluid_parameter_double (const size_t i, const std::string &parameter)
 Double fluid parameter (currently the volume translation parameter for cubic)
 
virtual bool clear_comp_change ()
 When the composition changes, clear all cached values that are only dependent on composition, but not the thermodynamic state.
 
virtual const CoolProp::SimpleStateget_reducing_state ()
 Get the state that is used in the equation of state or mixture model to reduce the state. More...
 
const CoolProp::SimpleStateget_state (const std::string &state)
 Get a desired state point - backend dependent.
 
double Tmin (void)
 Get the minimum temperature in K.
 
double Tmax (void)
 Get the maximum temperature in K.
 
double pmax (void)
 Get the maximum pressure in Pa.
 
double Ttriple (void)
 Get the triple point temperature in K.
 
phases phase (void)
 Get the phase of the state.
 
void specify_phase (phases phase)
 Specify the phase for all further calculations with this state class.
 
void unspecify_phase (void)
 Unspecify the phase and go back to calculating it based on the inputs.
 
double T_critical (void)
 Return the critical temperature in K.
 
double p_critical (void)
 Return the critical pressure in Pa.
 
double rhomolar_critical (void)
 Return the critical molar density in mol/m^3.
 
double rhomass_critical (void)
 Return the critical mass density in kg/m^3.
 
std::vector< CriticalStateall_critical_points (void)
 Return the vector of critical points, including points that are unstable or correspond to negative pressure.
 
void build_spinodal ()
 Construct the spinodal curve for the mixture (or pure fluid)
 
SpinodalData get_spinodal_data ()
 Get the data from the spinodal curve constructed in the call to build_spinodal()
 
void criticality_contour_values (double &L1star, double &M1star)
 Calculate the criticality contour values \(\mathcal{L}_1^*\) and \(\mathcal{M}_1^*\).
 
double tangent_plane_distance (const double T, const double p, const std::vector< double > &w, const double rhomolar_guess=-1)
 Return the tangent plane distance for a given trial composition w. More...
 
double T_reducing (void)
 Return the reducing point temperature in K.
 
double rhomolar_reducing (void)
 Return the molar density at the reducing point in mol/m^3.
 
double rhomass_reducing (void)
 Return the mass density at the reducing point in kg/m^3.
 
double p_triple (void)
 Return the triple point pressure in Pa.
 
std::string name ()
 Return the name - backend dependent.
 
std::string description ()
 Return the description - backend dependent.
 
double dipole_moment ()
 Return the dipole moment in C-m (1 D = 3.33564e-30 C-m)
 
double keyed_output (parameters key)
 Retrieve a value by key.
 
double trivial_keyed_output (parameters key)
 A trivial keyed output like molar mass that does not depend on the state.
 
double saturated_liquid_keyed_output (parameters key)
 Get an output from the saturated liquid state by key.
 
double saturated_vapor_keyed_output (parameters key)
 Get an output from the saturated vapor state by key.
 
double T (void)
 Return the temperature in K.
 
double rhomolar (void)
 Return the molar density in mol/m^3.
 
double rhomass (void)
 Return the mass density in kg/m^3.
 
double p (void)
 Return the pressure in Pa.
 
double Q (void)
 Return the vapor quality (mol/mol); Q = 0 for saturated liquid.
 
double tau (void)
 Return the reciprocal of the reduced temperature ( \(\tau = T_c/T\))
 
double delta (void)
 Return the reduced density ( \(\delta = \rho/\rho_c\))
 
double molar_mass (void)
 Return the molar mass in kg/mol.
 
double acentric_factor (void)
 Return the acentric factor.
 
double gas_constant (void)
 Return the mole-fraction weighted gas constant in J/mol/K.
 
double Bvirial (void)
 Return the B virial coefficient.
 
double dBvirial_dT (void)
 Return the derivative of the B virial coefficient with respect to temperature.
 
double Cvirial (void)
 Return the C virial coefficient.
 
double dCvirial_dT (void)
 Return the derivative of the C virial coefficient with respect to temperature.
 
double compressibility_factor (void)
 Return the compressibility factor \( Z = p/(rho R T) \).
 
double hmolar (void)
 Return the molar enthalpy in J/mol.
 
double hmolar_residual (void)
 Return the residual molar enthalpy in J/mol.
 
double hmass (void)
 Return the mass enthalpy in J/kg.
 
double hmolar_excess (void)
 Return the excess molar enthalpy in J/mol.
 
double hmass_excess (void)
 Return the excess mass enthalpy in J/kg.
 
double smolar (void)
 Return the molar entropy in J/mol/K.
 
double smolar_residual (void)
 Return the residual molar entropy (as a function of temperature and density) in J/mol/K.
 
double smass (void)
 Return the molar entropy in J/kg/K.
 
double smolar_excess (void)
 Return the molar entropy in J/mol/K.
 
double smass_excess (void)
 Return the molar entropy in J/kg/K.
 
double umolar (void)
 Return the molar internal energy in J/mol.
 
double umass (void)
 Return the mass internal energy in J/kg.
 
double umolar_excess (void)
 Return the excess internal energy in J/mol.
 
double umass_excess (void)
 Return the excess internal energy in J/kg.
 
double cpmolar (void)
 Return the molar constant pressure specific heat in J/mol/K.
 
double cpmass (void)
 Return the mass constant pressure specific heat in J/kg/K.
 
double cp0molar (void)
 Return the molar constant pressure specific heat for ideal gas part only in J/mol/K.
 
double cp0mass (void)
 Return the mass constant pressure specific heat for ideal gas part only in J/kg/K.
 
double cvmolar (void)
 Return the molar constant volume specific heat in J/mol/K.
 
double cvmass (void)
 Return the mass constant volume specific heat in J/kg/K.
 
double gibbsmolar (void)
 Return the Gibbs energy in J/mol.
 
double gibbsmolar_residual (void)
 Return the residual Gibbs energy in J/mol.
 
double gibbsmass (void)
 Return the Gibbs energy in J/kg.
 
double gibbsmolar_excess (void)
 Return the excess Gibbs energy in J/mol.
 
double gibbsmass_excess (void)
 Return the excess Gibbs energy in J/kg.
 
double helmholtzmolar (void)
 Return the Helmholtz energy in J/mol.
 
double helmholtzmass (void)
 Return the Helmholtz energy in J/kg.
 
double helmholtzmolar_excess (void)
 Return the excess Helmholtz energy in J/mol.
 
double helmholtzmass_excess (void)
 Return the excess Helmholtz energy in J/kg.
 
double volumemolar_excess (void)
 Return the excess volume in m^3/mol.
 
double volumemass_excess (void)
 Return the excess volume in m^3/kg.
 
double speed_sound (void)
 Return the speed of sound in m/s.
 
double isothermal_compressibility (void)
 Return the isothermal compressibility \( \kappa = -\frac{1}{v}\left.\frac{\partial v}{\partial p}\right|_T=\frac{1}{\rho}\left.\frac{\partial \rho}{\partial p}\right|_T\) in 1/Pa.
 
double isobaric_expansion_coefficient (void)
 Return the isobaric expansion coefficient \( \beta = \frac{1}{v}\left.\frac{\partial v}{\partial T}\right|_p = -\frac{1}{\rho}\left.\frac{\partial \rho}{\partial T}\right|_p\) in 1/K.
 
double isentropic_expansion_coefficient (void)
 Return the isentropic expansion coefficient \( \kappa_s = -\frac{c_p}{c_v}\frac{v}{p}\left.\frac{\partial p}{\partial v}\right|_T = \frac{\rho}{p}\left.\frac{\partial p}{\partial \rho}\right|_s\).
 
double fugacity_coefficient (std::size_t i)
 Return the fugacity coefficient of the i-th component of the mixture.
 
std::vector< double > fugacity_coefficients ()
 Return a vector of the fugacity coefficients for all components in the mixture.
 
double fugacity (std::size_t i)
 Return the fugacity of the i-th component of the mixture.
 
double chemical_potential (std::size_t i)
 Return the chemical potential of the i-th component of the mixture.
 
double fundamental_derivative_of_gas_dynamics (void)
 Return the fundamental derivative of gas dynamics \( \Gamma \). More...
 
double PIP ()
 Return the phase identification parameter (PIP) of G. Venkatarathnam and L.R. Oellrich, "Identification of the phase of a fluid using partial derivatives of pressure, volume, and temperature without reference to saturation properties: Applications in phase equilibria calculations".
 
void true_critical_point (double &T, double &rho)
 Calculate the "true" critical point for pure fluids where dpdrho|T and d2p/drho2|T are equal to zero.
 
void ideal_curve (const std::string &type, std::vector< double > &T, std::vector< double > &p)
 Calculate an ideal curve for a pure fluid. More...
 
CoolPropDbl first_partial_deriv (parameters Of, parameters Wrt, parameters Constant)
 The first partial derivative in homogeneous phases. More...
 
CoolPropDbl second_partial_deriv (parameters Of1, parameters Wrt1, parameters Constant1, parameters Wrt2, parameters Constant2)
 The second partial derivative in homogeneous phases. More...
 
CoolPropDbl first_saturation_deriv (parameters Of1, parameters Wrt1)
 The first partial derivative along the saturation curve. More...
 
CoolPropDbl second_saturation_deriv (parameters Of1, parameters Wrt1, parameters Wrt2)
 The second partial derivative along the saturation curve. More...
 
double first_two_phase_deriv (parameters Of, parameters Wrt, parameters Constant)
 Calculate the first "two-phase" derivative as described by Thorade and Sadaat, EAS, 2013. More...
 
double second_two_phase_deriv (parameters Of, parameters Wrt1, parameters Constant1, parameters Wrt2, parameters Constant2)
 Calculate the second "two-phase" derivative as described by Thorade and Sadaat, EAS, 2013. More...
 
double first_two_phase_deriv_splined (parameters Of, parameters Wrt, parameters Constant, double x_end)
 Calculate the first "two-phase" derivative as described by Thorade and Sadaat, EAS, 2013. More...
 
void build_phase_envelope (const std::string &type="")
 Construct the phase envelope for a mixture. More...
 
const CoolProp::PhaseEnvelopeDataget_phase_envelope_data ()
 After having calculated the phase envelope, return the phase envelope data.
 
virtual bool has_melting_line (void)
 Return true if the fluid has a melting line - default is false, but can be re-implemented by derived class.
 
double melting_line (int param, int given, double value)
 Return a value from the melting line. More...
 
double saturation_ancillary (parameters param, int Q, parameters given, double value)
 Return the value from a saturation ancillary curve (if the backend implements it) More...
 
double viscosity (void)
 Return the viscosity in Pa-s.
 
void viscosity_contributions (CoolPropDbl &dilute, CoolPropDbl &initial_density, CoolPropDbl &residual, CoolPropDbl &critical)
 Return the viscosity contributions, each in Pa-s.
 
double conductivity (void)
 Return the thermal conductivity in W/m/K.
 
void conductivity_contributions (CoolPropDbl &dilute, CoolPropDbl &initial_density, CoolPropDbl &residual, CoolPropDbl &critical)
 Return the thermal conductivity contributions, each in W/m/K.
 
double surface_tension (void)
 Return the surface tension in N/m.
 
double Prandtl (void)
 Return the Prandtl number (dimensionless)
 
void conformal_state (const std::string &reference_fluid, CoolPropDbl &T, CoolPropDbl &rhomolar)
 Find the conformal state needed for ECS. More...
 
void change_EOS (const std::size_t i, const std::string &EOS_name)
 Change the equation of state for a given component to a specified EOS. More...
 
CoolPropDbl alpha0 (void)
 Return the term \( \alpha^0 \).
 
CoolPropDbl dalpha0_dDelta (void)
 Return the term \( \alpha^0_{\delta} \).
 
CoolPropDbl dalpha0_dTau (void)
 Return the term \( \alpha^0_{\tau} \).
 
CoolPropDbl d2alpha0_dDelta2 (void)
 Return the term \( \alpha^0_{\delta\delta} \).
 
CoolPropDbl d2alpha0_dDelta_dTau (void)
 Return the term \( \alpha^0_{\delta\tau} \).
 
CoolPropDbl d2alpha0_dTau2 (void)
 Return the term \( \alpha^0_{\tau\tau} \).
 
CoolPropDbl d3alpha0_dTau3 (void)
 Return the term \( \alpha^0_{\tau\tau\tau} \).
 
CoolPropDbl d3alpha0_dDelta_dTau2 (void)
 Return the term \( \alpha^0_{\delta\tau\tau} \).
 
CoolPropDbl d3alpha0_dDelta2_dTau (void)
 Return the term \( \alpha^0_{\delta\delta\tau} \).
 
CoolPropDbl d3alpha0_dDelta3 (void)
 Return the term \( \alpha^0_{\delta\delta\delta} \).
 
CoolPropDbl alphar (void)
 Return the term \( \alpha^r \).
 
CoolPropDbl dalphar_dDelta (void)
 Return the term \( \alpha^r_{\delta} \).
 
CoolPropDbl dalphar_dTau (void)
 Return the term \( \alpha^r_{\tau} \).
 
CoolPropDbl d2alphar_dDelta2 (void)
 Return the term \( \alpha^r_{\delta\delta} \).
 
CoolPropDbl d2alphar_dDelta_dTau (void)
 Return the term \( \alpha^r_{\delta\tau} \).
 
CoolPropDbl d2alphar_dTau2 (void)
 Return the term \( \alpha^r_{\tau\tau} \).
 
CoolPropDbl d3alphar_dDelta3 (void)
 Return the term \( \alpha^r_{\delta\delta\delta} \).
 
CoolPropDbl d3alphar_dDelta2_dTau (void)
 Return the term \( \alpha^r_{\delta\delta\tau} \).
 
CoolPropDbl d3alphar_dDelta_dTau2 (void)
 Return the term \( \alpha^r_{\delta\tau\tau} \).
 
CoolPropDbl d3alphar_dTau3 (void)
 Return the term \( \alpha^r_{\tau\tau\tau} \).
 
CoolPropDbl d4alphar_dDelta4 (void)
 Return the term \( \alpha^r_{\delta\delta\delta\delta} \).
 
CoolPropDbl d4alphar_dDelta3_dTau (void)
 Return the term \( \alpha^r_{\delta\delta\delta\tau} \).
 
CoolPropDbl d4alphar_dDelta2_dTau2 (void)
 Return the term \( \alpha^r_{\delta\delta\tau\tau} \).
 
CoolPropDbl d4alphar_dDelta_dTau3 (void)
 Return the term \( \alpha^r_{\delta\tau\tau\tau} \).
 
CoolPropDbl d4alphar_dTau4 (void)
 Return the term \( \alpha^r_{\tau\tau\tau\tau} \).
 

Protected Member Functions

void set_fractions (const std::vector< CoolPropDbl > &fractions)
 Set the fractions. More...
 
CoolPropDbl calc_first_partial_deriv (parameters Of, parameters Wrt, parameters Constant)
 Calculate the first partial derivative for the desired derivative.
 
double calc_drhodTatPx (double T, double p, double x)
 Partial derivative of density with respect to temperature at constant pressure and composition.
 
double calc_dsdTatPx (double T, double p, double x)
 Partial derivative of entropy with respect to temperature at constant pressure and composition.
 
double calc_dhdTatPx (double T, double p, double x)
 Partial derivative of enthalpy with respect to temperature at constant pressure and composition.
 
double calc_dsdTatPxdT (double T, double p, double x)
 Partial derivative of entropy with respect to temperature at constant pressure and composition integrated in temperature.
 
double calc_dhdTatPxdT (double T, double p, double x)
 Partial derivative of enthalpy with respect to temperature at constant pressure and composition integrated in temperature.
 
double calc_dsdpatTx (double rho, double drhodTatPx)
 Partial derivative of entropy with respect to pressure at constant temperature and composition

\[ \left( \frac{\partial s}{\partial p} \right)_T = - \left( \frac{\partial v}{\partial T} \right)_p = \rho^{-2} \left( \frac{\partial \rho}{\partial T} \right)_p \right) \]

. More...

 
double calc_dhdpatTx (double T, double rho, double drhodTatPx)
 Partial derivative of enthalpy with respect to pressure at constant temperature and composition

\[ \left( \frac{\partial h}{\partial p} \right)_T = v - T \left( \frac{\partial v}{\partial T} \right)_p = \rho^{-1} \left( 1 + T \rho^{-1} \left( \frac{\partial \rho}{\partial T} \right)_p \right) \]

. More...

 
- Protected Member Functions inherited from CoolProp::AbstractState
bool isSupercriticalPhase (void)
 
bool isHomogeneousPhase (void)
 
bool isTwoPhase (void)
 
virtual CoolPropDbl calc_hmolar (void)
 Using this backend, calculate the molar enthalpy in J/mol.
 
virtual CoolPropDbl calc_hmolar_residual (void)
 Using this backend, calculate the residual molar enthalpy in J/mol.
 
virtual CoolPropDbl calc_smolar (void)
 Using this backend, calculate the molar entropy in J/mol/K.
 
virtual CoolPropDbl calc_smolar_residual (void)
 Using this backend, calculate the residual molar entropy in J/mol/K.
 
virtual CoolPropDbl calc_umolar (void)
 Using this backend, calculate the molar internal energy in J/mol.
 
virtual CoolPropDbl calc_cpmolar (void)
 Using this backend, calculate the molar constant-pressure specific heat in J/mol/K.
 
virtual CoolPropDbl calc_cpmolar_idealgas (void)
 Using this backend, calculate the ideal gas molar constant-pressure specific heat in J/mol/K.
 
virtual CoolPropDbl calc_cvmolar (void)
 Using this backend, calculate the molar constant-volume specific heat in J/mol/K.
 
virtual CoolPropDbl calc_gibbsmolar (void)
 Using this backend, calculate the molar Gibbs function in J/mol.
 
virtual CoolPropDbl calc_gibbsmolar_residual (void)
 Using this backend, calculate the residual molar Gibbs function in J/mol.
 
virtual CoolPropDbl calc_helmholtzmolar (void)
 Using this backend, calculate the molar Helmholtz energy in J/mol.
 
virtual CoolPropDbl calc_speed_sound (void)
 Using this backend, calculate the speed of sound in m/s.
 
virtual CoolPropDbl calc_isothermal_compressibility (void)
 Using this backend, calculate the isothermal compressibility \( \kappa = -\frac{1}{v}\left.\frac{\partial v}{\partial p}\right|_T=\frac{1}{\rho}\left.\frac{\partial \rho}{\partial p}\right|_T\) in 1/Pa.
 
virtual CoolPropDbl calc_isobaric_expansion_coefficient (void)
 Using this backend, calculate the isobaric expansion coefficient \( \beta = \frac{1}{v}\left.\frac{\partial v}{\partial T}\right|_p = -\frac{1}{\rho}\left.\frac{\partial \rho}{\partial T}\right|_p\) in 1/K.
 
virtual CoolPropDbl calc_isentropic_expansion_coefficient (void)
 Using this backend, calculate the isentropic expansion coefficient \( \kappa_s = -\frac{c_p}{c_v}\frac{v}{p}\left.\frac{\partial p}{\partial v}\right|_T = \frac{\rho}{p}\left.\frac{\partial p}{\partial \rho}\right|_s\).
 
virtual CoolPropDbl calc_surface_tension (void)
 Using this backend, calculate the surface tension in N/m.
 
virtual CoolPropDbl calc_molar_mass (void)
 Using this backend, calculate the molar mass in kg/mol.
 
virtual CoolPropDbl calc_acentric_factor (void)
 Using this backend, calculate the acentric factor.
 
virtual CoolPropDbl calc_pressure (void)
 Using this backend, calculate the pressure in Pa.
 
virtual CoolPropDbl calc_gas_constant (void)
 Using this backend, calculate the universal gas constant \(R_u\) in J/mol/K.
 
virtual CoolPropDbl calc_fugacity_coefficient (std::size_t i)
 Using this backend, calculate the fugacity coefficient (dimensionless)
 
virtual std::vector< CoolPropDbl > calc_fugacity_coefficients ()
 Using this backend, calculate the fugacity in Pa.
 
virtual CoolPropDbl calc_fugacity (std::size_t i)
 Using this backend, calculate the fugacity in Pa.
 
virtual CoolPropDbl calc_chemical_potential (std::size_t i)
 Using this backend, calculate the chemical potential in J/mol.
 
virtual CoolPropDbl calc_PIP (void)
 Using this backend, calculate the phase identification parameter (PIP)
 
virtual void calc_excess_properties (void)
 Using this backend, calculate and cache the excess properties.
 
virtual CoolPropDbl calc_alphar (void)
 Using this backend, calculate the residual Helmholtz energy term \(\alpha^r\) (dimensionless)
 
virtual CoolPropDbl calc_dalphar_dDelta (void)
 Using this backend, calculate the residual Helmholtz energy term \(\alpha^r_{\delta}\) (dimensionless)
 
virtual CoolPropDbl calc_dalphar_dTau (void)
 Using this backend, calculate the residual Helmholtz energy term \(\alpha^r_{\tau}\) (dimensionless)
 
virtual CoolPropDbl calc_d2alphar_dDelta2 (void)
 Using this backend, calculate the residual Helmholtz energy term \(\alpha^r_{\delta\delta}\) (dimensionless)
 
virtual CoolPropDbl calc_d2alphar_dDelta_dTau (void)
 Using this backend, calculate the residual Helmholtz energy term \(\alpha^r_{\delta\tau}\) (dimensionless)
 
virtual CoolPropDbl calc_d2alphar_dTau2 (void)
 Using this backend, calculate the residual Helmholtz energy term \(\alpha^r_{\tau\tau}\) (dimensionless)
 
virtual CoolPropDbl calc_d3alphar_dDelta3 (void)
 Using this backend, calculate the residual Helmholtz energy term \(\alpha^r_{\delta\delta\delta}\) (dimensionless)
 
virtual CoolPropDbl calc_d3alphar_dDelta2_dTau (void)
 Using this backend, calculate the residual Helmholtz energy term \(\alpha^r_{\delta\delta\tau}\) (dimensionless)
 
virtual CoolPropDbl calc_d3alphar_dDelta_dTau2 (void)
 Using this backend, calculate the residual Helmholtz energy term \(\alpha^r_{\delta\tau\tau}\) (dimensionless)
 
virtual CoolPropDbl calc_d3alphar_dTau3 (void)
 Using this backend, calculate the residual Helmholtz energy term \(\alpha^r_{\tau\tau\tau}\) (dimensionless)
 
virtual CoolPropDbl calc_d4alphar_dDelta4 (void)
 Using this backend, calculate the residual Helmholtz energy term \(\alpha^r_{\delta\delta\delta\delta}\) (dimensionless)
 
virtual CoolPropDbl calc_d4alphar_dDelta3_dTau (void)
 Using this backend, calculate the residual Helmholtz energy term \(\alpha^r_{\delta\delta\delta\tau}\) (dimensionless)
 
virtual CoolPropDbl calc_d4alphar_dDelta2_dTau2 (void)
 Using this backend, calculate the residual Helmholtz energy term \(\alpha^r_{\delta\delta\tau\tau}\) (dimensionless)
 
virtual CoolPropDbl calc_d4alphar_dDelta_dTau3 (void)
 Using this backend, calculate the residual Helmholtz energy term \(\alpha^r_{\delta\tau\tau\tau}\) (dimensionless)
 
virtual CoolPropDbl calc_d4alphar_dTau4 (void)
 Using this backend, calculate the residual Helmholtz energy term \(\alpha^r_{\tau\tau\tau\tau}\) (dimensionless)
 
virtual CoolPropDbl calc_alpha0 (void)
 Using this backend, calculate the ideal-gas Helmholtz energy term \(\alpha^0\) (dimensionless)
 
virtual CoolPropDbl calc_dalpha0_dDelta (void)
 Using this backend, calculate the ideal-gas Helmholtz energy term \(\alpha^0_{\delta}\) (dimensionless)
 
virtual CoolPropDbl calc_dalpha0_dTau (void)
 Using this backend, calculate the ideal-gas Helmholtz energy term \(\alpha^0_{\tau}\) (dimensionless)
 
virtual CoolPropDbl calc_d2alpha0_dDelta_dTau (void)
 Using this backend, calculate the ideal-gas Helmholtz energy term \(\alpha^0_{\delta\delta}\) (dimensionless)
 
virtual CoolPropDbl calc_d2alpha0_dDelta2 (void)
 Using this backend, calculate the ideal-gas Helmholtz energy term \(\alpha^0_{\delta\tau}\) (dimensionless)
 
virtual CoolPropDbl calc_d2alpha0_dTau2 (void)
 Using this backend, calculate the ideal-gas Helmholtz energy term \(\alpha^0_{\tau\tau}\) (dimensionless)
 
virtual CoolPropDbl calc_d3alpha0_dDelta3 (void)
 Using this backend, calculate the ideal-gas Helmholtz energy term \(\alpha^0_{\delta\delta\delta}\) (dimensionless)
 
virtual CoolPropDbl calc_d3alpha0_dDelta2_dTau (void)
 Using this backend, calculate the ideal-gas Helmholtz energy term \(\alpha^0_{\delta\delta\tau}\) (dimensionless)
 
virtual CoolPropDbl calc_d3alpha0_dDelta_dTau2 (void)
 Using this backend, calculate the ideal-gas Helmholtz energy term \(\alpha^0_{\delta\tau\tau}\) (dimensionless)
 
virtual CoolPropDbl calc_d3alpha0_dTau3 (void)
 Using this backend, calculate the ideal-gas Helmholtz energy term \(\alpha^0_{\tau\tau\tau}\) (dimensionless)
 
virtual void calc_reducing_state (void)
 
virtual CoolPropDbl calc_pmax (void)
 Using this backend, calculate the maximum pressure in Pa.
 
virtual CoolPropDbl calc_GWP20 (void)
 Using this backend, calculate the 20-year global warming potential (GWP)
 
virtual CoolPropDbl calc_GWP100 (void)
 Using this backend, calculate the 100-year global warming potential (GWP)
 
virtual CoolPropDbl calc_GWP500 (void)
 Using this backend, calculate the 500-year global warming potential (GWP)
 
virtual CoolPropDbl calc_ODP (void)
 Using this backend, calculate the ozone depletion potential (ODP)
 
virtual CoolPropDbl calc_flame_hazard (void)
 Using this backend, calculate the flame hazard.
 
virtual CoolPropDbl calc_health_hazard (void)
 Using this backend, calculate the health hazard.
 
virtual CoolPropDbl calc_physical_hazard (void)
 Using this backend, calculate the physical hazard.
 
virtual CoolPropDbl calc_dipole_moment (void)
 Using this backend, calculate the dipole moment in C-m (1 D = 3.33564e-30 C-m)
 
virtual CoolPropDbl calc_second_partial_deriv (parameters Of1, parameters Wrt1, parameters Constant1, parameters Wrt2, parameters Constant2)
 Calculate the second partial derivative using the given backend.
 
virtual CoolPropDbl calc_reduced_density (void)
 Using this backend, calculate the reduced density (rho/rhoc)
 
virtual CoolPropDbl calc_reciprocal_reduced_temperature (void)
 Using this backend, calculate the reciprocal reduced temperature (Tc/T)
 
virtual CoolPropDbl calc_Bvirial (void)
 Using this backend, calculate the second virial coefficient.
 
virtual CoolPropDbl calc_Cvirial (void)
 Using this backend, calculate the third virial coefficient.
 
virtual CoolPropDbl calc_dBvirial_dT (void)
 Using this backend, calculate the derivative dB/dT.
 
virtual CoolPropDbl calc_dCvirial_dT (void)
 Using this backend, calculate the derivative dC/dT.
 
virtual CoolPropDbl calc_compressibility_factor (void)
 Using this backend, calculate the compressibility factor Z \( Z = p/(\rho R T) \).
 
virtual CoolPropDbl calc_Ttriple (void)
 Using this backend, get the triple point temperature in K.
 
virtual CoolPropDbl calc_p_triple (void)
 Using this backend, get the triple point pressure in Pa.
 
virtual CoolPropDbl calc_T_critical (void)
 Using this backend, get the critical point temperature in K.
 
virtual CoolPropDbl calc_T_reducing (void)
 Using this backend, get the reducing point temperature in K.
 
virtual CoolPropDbl calc_p_critical (void)
 Using this backend, get the critical point pressure in Pa.
 
virtual CoolPropDbl calc_p_reducing (void)
 Using this backend, get the reducing point pressure in Pa.
 
virtual CoolPropDbl calc_rhomolar_critical (void)
 Using this backend, get the critical point molar density in mol/m^3.
 
virtual CoolPropDbl calc_rhomass_critical (void)
 Using this backend, get the critical point mass density in kg/m^3 - Added for IF97Backend which is mass based.
 
virtual CoolPropDbl calc_rhomolar_reducing (void)
 Using this backend, get the reducing point molar density in mol/m^3.
 
virtual void calc_phase_envelope (const std::string &type)
 Using this backend, construct the phase envelope, the variable type describes the type of phase envelope to be built.
 
virtual CoolPropDbl calc_hmass_excess (void)
 
virtual CoolPropDbl calc_smass_excess (void)
 
virtual CoolPropDbl calc_cp0mass (void)
 
virtual CoolPropDbl calc_umass_excess (void)
 
virtual CoolPropDbl calc_gibbsmass (void)
 
virtual CoolPropDbl calc_gibbsmass_excess (void)
 
virtual CoolPropDbl calc_helmholtzmass (void)
 
virtual CoolPropDbl calc_helmholtzmass_excess (void)
 
virtual CoolPropDbl calc_volumemass_excess (void)
 
virtual void update_states (void)
 Update the states after having changed the reference state for enthalpy and entropy.
 
virtual CoolPropDbl calc_saturation_ancillary (parameters param, int Q, parameters given, double value)
 
virtual phases calc_phase (void)
 Using this backend, calculate the phase.
 
virtual void calc_specify_phase (phases phase)
 Using this backend, specify the phase to be used for all further calculations.
 
virtual void calc_unspecify_phase (void)
 Using this backend, unspecify the phase.
 
virtual std::vector< std::string > calc_fluid_names (void)
 Using this backend, get a vector of fluid names.
 
virtual const CoolProp::SimpleStatecalc_state (const std::string &state)
 Using this backend, calculate a phase given by the state string. More...
 
virtual const CoolProp::PhaseEnvelopeDatacalc_phase_envelope_data (void)
 
virtual std::vector< CoolPropDbl > calc_mole_fractions_liquid (void)
 
virtual std::vector< CoolPropDbl > calc_mole_fractions_vapor (void)
 
virtual const std::vector< CoolPropDbl > calc_mass_fractions (void)
 
virtual CoolPropDbl calc_first_saturation_deriv (parameters Of1, parameters Wrt1)
 
virtual CoolPropDbl calc_second_saturation_deriv (parameters Of1, parameters Wrt1, parameters Wrt2)
 
virtual CoolPropDbl calc_first_two_phase_deriv (parameters Of, parameters Wrt, parameters Constant)
 
virtual CoolPropDbl calc_second_two_phase_deriv (parameters Of, parameters Wrt, parameters Constant, parameters Wrt2, parameters Constant2)
 
virtual CoolPropDbl calc_first_two_phase_deriv_splined (parameters Of, parameters Wrt, parameters Constant, CoolPropDbl x_end)
 
virtual CoolPropDbl calc_saturated_liquid_keyed_output (parameters key)
 
virtual CoolPropDbl calc_saturated_vapor_keyed_output (parameters key)
 
virtual void calc_ideal_curve (const std::string &type, std::vector< double > &T, std::vector< double > &p)
 
virtual CoolPropDbl calc_T (void)
 Using this backend, get the temperature.
 
virtual CoolPropDbl calc_rhomolar (void)
 Using this backend, get the molar density in mol/m^3.
 
virtual double calc_tangent_plane_distance (const double T, const double p, const std::vector< double > &w, const double rhomolar_guess)
 Using this backend, calculate the tangent plane distance for a given trial composition.
 
virtual void calc_true_critical_point (double &T, double &rho)
 Using this backend, return true critical point where dp/drho|T = 0 and d2p/drho^2|T = 0.
 
virtual void calc_conformal_state (const std::string &reference_fluid, CoolPropDbl &T, CoolPropDbl &rhomolar)
 
virtual void calc_viscosity_contributions (CoolPropDbl &dilute, CoolPropDbl &initial_density, CoolPropDbl &residual, CoolPropDbl &critical)
 
virtual void calc_conductivity_contributions (CoolPropDbl &dilute, CoolPropDbl &initial_density, CoolPropDbl &residual, CoolPropDbl &critical)
 
virtual std::vector< CriticalStatecalc_all_critical_points (void)
 
virtual void calc_build_spinodal ()
 
virtual SpinodalData calc_get_spinodal_data ()
 
virtual void calc_criticality_contour_values (double &L1star, double &M1star)
 
virtual void mass_to_molar_inputs (CoolProp::input_pairs &input_pair, CoolPropDbl &value1, CoolPropDbl &value2)
 Convert mass-based input pair to molar-based input pair; If molar-based, do nothing. More...
 
virtual void calc_change_EOS (const std::size_t i, const std::string &EOS_name)
 Change the equation of state for a given component to a specified EOS.
 

Protected Attributes

std::vector< CoolPropDbl > _fractions
 Bulk values, state variables.
 
CachedElement _T_ref
 Reference values, no need to calculate them each time.
 
CachedElement _p_ref
 
CachedElement _x_ref
 
CachedElement _h_ref
 
CachedElement _s_ref
 
CachedElement _hmass_ref
 
CachedElement _smass_ref
 
CachedElement _cmass
 Additional cached elements used for the partial derivatives.
 
CachedElement _hmass
 
CachedElement _rhomass
 
CachedElement _smass
 
CachedElement _umass
 
CachedElement _drhodTatPx
 
CachedElement _dsdTatPx
 
CachedElement _dhdTatPx
 
CachedElement _dsdTatPxdT
 
CachedElement _dhdTatPxdT
 
CachedElement _dsdpatTx
 
CachedElement _dhdpatTx
 
IncompressibleFluidfluid
 
- Protected Attributes inherited from CoolProp::AbstractState
long _fluid_type
 Some administrative variables.
 
phases _phase
 The key for the phase from CoolProp::phases enum.
 
phases imposed_phase_index
 If the phase is imposed, the imposed phase index.
 
SimpleState _critical
 Two important points.
 
SimpleState _reducing
 
CachedElement _molar_mass
 Molar mass [mol/kg].
 
CachedElement _gas_constant
 Universal gas constant [J/mol/K].
 
double _rhomolar
 Bulk values.
 
double _T
 
double _p
 
double _Q
 
double _R
 
CachedElement _tau
 
CachedElement _delta
 
CachedElement _viscosity
 Transport properties.
 
CachedElement _conductivity
 
CachedElement _surface_tension
 
CachedElement _hmolar
 
CachedElement _smolar
 
CachedElement _umolar
 
CachedElement _logp
 
CachedElement _logrhomolar
 
CachedElement _cpmolar
 
CachedElement _cp0molar
 
CachedElement _cvmolar
 
CachedElement _speed_sound
 
CachedElement _gibbsmolar
 
CachedElement _helmholtzmolar
 
CachedElement _hmolar_residual
 Residual properties.
 
CachedElement _smolar_residual
 
CachedElement _gibbsmolar_residual
 
CachedElement _hmolar_excess
 Excess properties.
 
CachedElement _smolar_excess
 
CachedElement _gibbsmolar_excess
 
CachedElement _umolar_excess
 
CachedElement _volumemolar_excess
 
CachedElement _helmholtzmolar_excess
 
CachedElement _rhoLanc
 Ancillary values.
 
CachedElement _rhoVanc
 
CachedElement _pLanc
 
CachedElement _pVanc
 
CachedElement _TLanc
 
CachedElement _TVanc
 
CachedElement _fugacity_coefficient
 
CachedElement _rho_spline
 Smoothing values.
 
CachedElement _drho_spline_dh__constp
 
CachedElement _drho_spline_dp__consth
 
CachedElement _alpha0
 Cached low-level elements for in-place calculation of other properties.
 
CachedElement _dalpha0_dTau
 
CachedElement _dalpha0_dDelta
 
CachedElement _d2alpha0_dTau2
 
CachedElement _d2alpha0_dDelta_dTau
 
CachedElement _d2alpha0_dDelta2
 
CachedElement _d3alpha0_dTau3
 
CachedElement _d3alpha0_dDelta_dTau2
 
CachedElement _d3alpha0_dDelta2_dTau
 
CachedElement _d3alpha0_dDelta3
 
CachedElement _alphar
 
CachedElement _dalphar_dTau
 
CachedElement _dalphar_dDelta
 
CachedElement _d2alphar_dTau2
 
CachedElement _d2alphar_dDelta_dTau
 
CachedElement _d2alphar_dDelta2
 
CachedElement _d3alphar_dTau3
 
CachedElement _d3alphar_dDelta_dTau2
 
CachedElement _d3alphar_dDelta2_dTau
 
CachedElement _d3alphar_dDelta3
 
CachedElement _d4alphar_dTau4
 
CachedElement _d4alphar_dDelta_dTau3
 
CachedElement _d4alphar_dDelta2_dTau2
 
CachedElement _d4alphar_dDelta3_dTau
 
CachedElement _d4alphar_dDelta4
 
CachedElement _dalphar_dDelta_lim
 
CachedElement _d2alphar_dDelta2_lim
 
CachedElement _d2alphar_dDelta_dTau_lim
 
CachedElement _d3alphar_dDelta2_dTau_lim
 
CachedElement _rhoLmolar
 Two-Phase variables.
 
CachedElement _rhoVmolar
 

Additional Inherited Members

- Static Public Member Functions inherited from CoolProp::AbstractState
static AbstractStatefactory (const std::string &backend, const std::string &fluid_names)
 A factory function to return a pointer to a new-allocated instance of one of the backends. More...
 
static AbstractStatefactory (const std::string &backend, const std::vector< std::string > &fluid_names)
 A factory function to return a pointer to a new-allocated instance of one of the backends. More...
 

Constructor & Destructor Documentation

◆ IncompressibleBackend() [1/3]

CoolProp::IncompressibleBackend::IncompressibleBackend ( IncompressibleFluid fluid)

The instantiator.

Parameters
fluidobject, mostly for testing purposes

◆ IncompressibleBackend() [2/3]

CoolProp::IncompressibleBackend::IncompressibleBackend ( const std::string &  fluid_name)

The instantiator.

Parameters
fluid_namethe string with the fluid name

◆ IncompressibleBackend() [3/3]

CoolProp::IncompressibleBackend::IncompressibleBackend ( const std::vector< std::string > &  component_names)

The instantiator.

Parameters
component_namesThe vector of strings of the fluid components, without file ending

Member Function Documentation

◆ backend_name()

std::string CoolProp::IncompressibleBackend::backend_name ( void  )
inlinevirtual

Get a string representation of the backend - for instance "HelmholtzEOSMixtureBackend" for the core mixture model in CoolProp.

Must be overloaded by the backend to provide the backend's name

Implements CoolProp::AbstractState.

◆ calc_dhdpatTx()

double CoolProp::IncompressibleBackend::calc_dhdpatTx ( double  T,
double  rho,
double  drhodTatPx 
)
protected

Partial derivative of enthalpy with respect to pressure at constant temperature and composition

\[ \left( \frac{\partial h}{\partial p} \right)_T = v - T \left( \frac{\partial v}{\partial T} \right)_p = \rho^{-1} \left( 1 + T \rho^{-1} \left( \frac{\partial \rho}{\partial T} \right)_p \right) \]

.

Partial derivative of enthalpy with respect to pressure at constant temperature and composition.

◆ calc_dsdpatTx()

double CoolProp::IncompressibleBackend::calc_dsdpatTx ( double  rho,
double  drhodTatPx 
)
protected

Partial derivative of entropy with respect to pressure at constant temperature and composition

\[ \left( \frac{\partial s}{\partial p} \right)_T = - \left( \frac{\partial v}{\partial T} \right)_p = \rho^{-2} \left( \frac{\partial \rho}{\partial T} \right)_p \right) \]

.

Partial derivative of entropy with respect to pressure at constant temperature and composition.

◆ calc_melting_line()

CoolPropDbl CoolProp::IncompressibleBackend::calc_melting_line ( int  param,
int  given,
CoolPropDbl  value 
)
virtual

Calculate T given pressure and internal energy **.

We start with the functions that do not need a reference state

Reimplemented from CoolProp::AbstractState.

◆ calc_rhomass()

CoolPropDbl CoolProp::IncompressibleBackend::calc_rhomass ( void  )
inlinevirtual
Parameters
umassThe mass internal energy in J/kg
pThe pressure in Pa
Returns
T The temperature in KWe start with the functions that do not need a reference state

Reimplemented from CoolProp::AbstractState.

◆ clear()

bool CoolProp::IncompressibleBackend::clear ( )
virtual

Clear all the cached values.

Additional cached elements used for the partial derivatives

Reimplemented from CoolProp::AbstractState.

◆ DmassP_flash()

CoolPropDbl CoolProp::IncompressibleBackend::DmassP_flash ( CoolPropDbl  rhomass,
CoolPropDbl  p 
)

These functions should be protected, but that requires new tests.

Calculate T given pressure and density.

I'll leave that as a TODO item for now.Calculate T given pressure and density

Parameters
rhomassThe mass density in kg/m^3
pThe pressure in Pa
Returns
T The temperature in K
Parameters
rhomassThe mass density in kg/m^3
pThe pressure in Pa
Returns
T The temperature in K

◆ HmassP_flash()

CoolPropDbl CoolProp::IncompressibleBackend::HmassP_flash ( CoolPropDbl  hmass,
CoolPropDbl  p 
)

Calculate T given pressure and enthalpy.

Parameters
hmassThe mass enthalpy in J/kg
pThe pressure in Pa
Returns
T The temperature in K

◆ PSmass_flash()

CoolPropDbl CoolProp::IncompressibleBackend::PSmass_flash ( CoolPropDbl  p,
CoolPropDbl  smass 
)

Calculate T given pressure and entropy.

Parameters
smassThe mass entropy in J/kg/K
pThe pressure in Pa
Returns
T The temperature in K

◆ rhomass()

double CoolProp::IncompressibleBackend::rhomass ( void  )

We have to override some of the functions from the AbstractState.

The incompressibles are only mass-based and do not support conversion from molar to specific quantities. We also have a few new chaced variables that we need.Return the mass density in kg/m^3

◆ set_fractions()

void CoolProp::IncompressibleBackend::set_fractions ( const std::vector< CoolPropDbl > &  fractions)
protected

Set the fractions.

Parameters
fractionsThe vector of fractions of the components converted to the correct input

◆ set_mass_fractions()

void CoolProp::IncompressibleBackend::set_mass_fractions ( const std::vector< CoolPropDbl > &  mass_fractions)
virtual

Set the mass fractions.

Parameters
mass_fractionsThe vector of mass fractions of the components

Implements CoolProp::AbstractState.

◆ set_mole_fractions()

void CoolProp::IncompressibleBackend::set_mole_fractions ( const std::vector< CoolPropDbl > &  mole_fractions)
virtual

Set the mole fractions.

Parameters
mole_fractionsThe vector of mole fractions of the components

Implements CoolProp::AbstractState.

◆ set_reference_state()

void CoolProp::IncompressibleBackend::set_reference_state ( double  T0 = 20 + 273.15,
double  p0 = 101325,
double  x0 = 0.0,
double  h0 = 0.0,
double  s0 = 0.0 
)

Update the reference values and clear the state.

Reference values, no need to calculate them each time

◆ set_volu_fractions()

void CoolProp::IncompressibleBackend::set_volu_fractions ( const std::vector< CoolPropDbl > &  volu_fractions)
virtual

Set the volume fractions.

Parameters
volu_fractionsThe vector of volume fractions of the components

Reimplemented from CoolProp::AbstractState.

◆ update()

void CoolProp::IncompressibleBackend::update ( CoolProp::input_pairs  input_pair,
double  value1,
double  value2 
)
virtual

Updating function for incompressible fluid.

In this function we take a pair of thermodynamic states, those defined in the input_pairs enumeration and update all the internal variables that we can.

Parameters
input_pairInteger key from CoolProp::input_pairs to the two inputs that will be passed to the function
value1First input value
value2Second input value

Implements CoolProp::AbstractState.


The documentation for this class was generated from the following files: