compbio
PacketMath.h
1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2014 Benoit Steiner (benoit.steiner.goog@gmail.com)
5 //
6 // This Source Code Form is subject to the terms of the Mozilla
7 // Public License v. 2.0. If a copy of the MPL was not distributed
8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9 
10 #ifndef EIGEN_PACKET_MATH_AVX_H
11 #define EIGEN_PACKET_MATH_AVX_H
12 
13 namespace Eigen {
14 
15 namespace internal {
16 
17 #ifndef EIGEN_CACHEFRIENDLY_PRODUCT_THRESHOLD
18 #define EIGEN_CACHEFRIENDLY_PRODUCT_THRESHOLD 8
19 #endif
20 
21 #ifndef EIGEN_ARCH_DEFAULT_NUMBER_OF_REGISTERS
22 #define EIGEN_ARCH_DEFAULT_NUMBER_OF_REGISTERS (2*sizeof(void*))
23 #endif
24 
25 #ifdef __FMA__
26 #ifndef EIGEN_HAS_SINGLE_INSTRUCTION_MADD
27 #define EIGEN_HAS_SINGLE_INSTRUCTION_MADD
28 #endif
29 #endif
30 
31 typedef __m256 Packet8f;
32 typedef __m256i Packet8i;
33 typedef __m256d Packet4d;
34 
35 template<> struct is_arithmetic<__m256> { enum { value = true }; };
36 template<> struct is_arithmetic<__m256i> { enum { value = true }; };
37 template<> struct is_arithmetic<__m256d> { enum { value = true }; };
38 
39 #define _EIGEN_DECLARE_CONST_Packet8f(NAME,X) \
40  const Packet8f p8f_##NAME = pset1<Packet8f>(X)
41 
42 #define _EIGEN_DECLARE_CONST_Packet4d(NAME,X) \
43  const Packet4d p4d_##NAME = pset1<Packet4d>(X)
44 
45 #define _EIGEN_DECLARE_CONST_Packet8f_FROM_INT(NAME,X) \
46  const Packet8f p8f_##NAME = _mm256_castsi256_ps(pset1<Packet8i>(X))
47 
48 #define _EIGEN_DECLARE_CONST_Packet8i(NAME,X) \
49  const Packet8i p8i_##NAME = pset1<Packet8i>(X)
50 
51 // Use the packet_traits defined in AVX512/PacketMath.h instead if we're going
52 // to leverage AVX512 instructions.
53 #ifndef EIGEN_VECTORIZE_AVX512
54 template<> struct packet_traits<float> : default_packet_traits
55 {
56  typedef Packet8f type;
57  typedef Packet4f half;
58  enum {
59  Vectorizable = 1,
60  AlignedOnScalar = 1,
61  size=8,
62  HasHalfPacket = 1,
63 
64  HasDiv = 1,
65  HasSin = EIGEN_FAST_MATH,
66  HasCos = 0,
67  HasLog = 1,
68  HasExp = 1,
69  HasSqrt = 1,
70  HasRsqrt = 1,
71  HasTanh = EIGEN_FAST_MATH,
72  HasBlend = 1,
73  HasRound = 1,
74  HasFloor = 1,
75  HasCeil = 1
76  };
77 };
78 template<> struct packet_traits<double> : default_packet_traits
79 {
80  typedef Packet4d type;
81  typedef Packet2d half;
82  enum {
83  Vectorizable = 1,
84  AlignedOnScalar = 1,
85  size=4,
86  HasHalfPacket = 1,
87 
88  HasDiv = 1,
89  HasExp = 1,
90  HasSqrt = 1,
91  HasRsqrt = 1,
92  HasBlend = 1,
93  HasRound = 1,
94  HasFloor = 1,
95  HasCeil = 1
96  };
97 };
98 #endif
99 
100 template<> struct scalar_div_cost<float,true> { enum { value = 14 }; };
101 template<> struct scalar_div_cost<double,true> { enum { value = 16 }; };
102 
103 /* Proper support for integers is only provided by AVX2. In the meantime, we'll
104  use SSE instructions and packets to deal with integers.
105 template<> struct packet_traits<int> : default_packet_traits
106 {
107  typedef Packet8i type;
108  enum {
109  Vectorizable = 1,
110  AlignedOnScalar = 1,
111  size=8
112  };
113 };
114 */
115 
116 template<> struct unpacket_traits<Packet8f> { typedef float type; typedef Packet4f half; enum {size=8, alignment=Aligned32}; };
117 template<> struct unpacket_traits<Packet4d> { typedef double type; typedef Packet2d half; enum {size=4, alignment=Aligned32}; };
118 template<> struct unpacket_traits<Packet8i> { typedef int type; typedef Packet4i half; enum {size=8, alignment=Aligned32}; };
119 
120 template<> EIGEN_STRONG_INLINE Packet8f pset1<Packet8f>(const float& from) { return _mm256_set1_ps(from); }
121 template<> EIGEN_STRONG_INLINE Packet4d pset1<Packet4d>(const double& from) { return _mm256_set1_pd(from); }
122 template<> EIGEN_STRONG_INLINE Packet8i pset1<Packet8i>(const int& from) { return _mm256_set1_epi32(from); }
123 
124 template<> EIGEN_STRONG_INLINE Packet8f pload1<Packet8f>(const float* from) { return _mm256_broadcast_ss(from); }
125 template<> EIGEN_STRONG_INLINE Packet4d pload1<Packet4d>(const double* from) { return _mm256_broadcast_sd(from); }
126 
127 template<> EIGEN_STRONG_INLINE Packet8f plset<Packet8f>(const float& a) { return _mm256_add_ps(_mm256_set1_ps(a), _mm256_set_ps(7.0,6.0,5.0,4.0,3.0,2.0,1.0,0.0)); }
128 template<> EIGEN_STRONG_INLINE Packet4d plset<Packet4d>(const double& a) { return _mm256_add_pd(_mm256_set1_pd(a), _mm256_set_pd(3.0,2.0,1.0,0.0)); }
129 
130 template<> EIGEN_STRONG_INLINE Packet8f padd<Packet8f>(const Packet8f& a, const Packet8f& b) { return _mm256_add_ps(a,b); }
131 template<> EIGEN_STRONG_INLINE Packet4d padd<Packet4d>(const Packet4d& a, const Packet4d& b) { return _mm256_add_pd(a,b); }
132 
133 template<> EIGEN_STRONG_INLINE Packet8f psub<Packet8f>(const Packet8f& a, const Packet8f& b) { return _mm256_sub_ps(a,b); }
134 template<> EIGEN_STRONG_INLINE Packet4d psub<Packet4d>(const Packet4d& a, const Packet4d& b) { return _mm256_sub_pd(a,b); }
135 
136 template<> EIGEN_STRONG_INLINE Packet8f pnegate(const Packet8f& a)
137 {
138  return _mm256_sub_ps(_mm256_set1_ps(0.0),a);
139 }
140 template<> EIGEN_STRONG_INLINE Packet4d pnegate(const Packet4d& a)
141 {
142  return _mm256_sub_pd(_mm256_set1_pd(0.0),a);
143 }
144 
145 template<> EIGEN_STRONG_INLINE Packet8f pconj(const Packet8f& a) { return a; }
146 template<> EIGEN_STRONG_INLINE Packet4d pconj(const Packet4d& a) { return a; }
147 template<> EIGEN_STRONG_INLINE Packet8i pconj(const Packet8i& a) { return a; }
148 
149 template<> EIGEN_STRONG_INLINE Packet8f pmul<Packet8f>(const Packet8f& a, const Packet8f& b) { return _mm256_mul_ps(a,b); }
150 template<> EIGEN_STRONG_INLINE Packet4d pmul<Packet4d>(const Packet4d& a, const Packet4d& b) { return _mm256_mul_pd(a,b); }
151 
152 
153 template<> EIGEN_STRONG_INLINE Packet8f pdiv<Packet8f>(const Packet8f& a, const Packet8f& b) { return _mm256_div_ps(a,b); }
154 template<> EIGEN_STRONG_INLINE Packet4d pdiv<Packet4d>(const Packet4d& a, const Packet4d& b) { return _mm256_div_pd(a,b); }
155 template<> EIGEN_STRONG_INLINE Packet8i pdiv<Packet8i>(const Packet8i& /*a*/, const Packet8i& /*b*/)
156 { eigen_assert(false && "packet integer division are not supported by AVX");
157  return pset1<Packet8i>(0);
158 }
159 
160 #ifdef __FMA__
161 template<> EIGEN_STRONG_INLINE Packet8f pmadd(const Packet8f& a, const Packet8f& b, const Packet8f& c) {
162 #if ( EIGEN_COMP_GNUC_STRICT || (EIGEN_COMP_CLANG && (EIGEN_COMP_CLANG<308)) )
163  // clang stupidly generates a vfmadd213ps instruction plus some vmovaps on registers,
164  // and gcc stupidly generates a vfmadd132ps instruction,
165  // so let's enforce it to generate a vfmadd231ps instruction since the most common use case is to accumulate
166  // the result of the product.
167  Packet8f res = c;
168  __asm__("vfmadd231ps %[a], %[b], %[c]" : [c] "+x" (res) : [a] "x" (a), [b] "x" (b));
169  return res;
170 #else
171  return _mm256_fmadd_ps(a,b,c);
172 #endif
173 }
174 template<> EIGEN_STRONG_INLINE Packet4d pmadd(const Packet4d& a, const Packet4d& b, const Packet4d& c) {
175 #if ( EIGEN_COMP_GNUC_STRICT || (EIGEN_COMP_CLANG && (EIGEN_COMP_CLANG<308)) )
176  // see above
177  Packet4d res = c;
178  __asm__("vfmadd231pd %[a], %[b], %[c]" : [c] "+x" (res) : [a] "x" (a), [b] "x" (b));
179  return res;
180 #else
181  return _mm256_fmadd_pd(a,b,c);
182 #endif
183 }
184 #endif
185 
186 template<> EIGEN_STRONG_INLINE Packet8f pmin<Packet8f>(const Packet8f& a, const Packet8f& b) { return _mm256_min_ps(a,b); }
187 template<> EIGEN_STRONG_INLINE Packet4d pmin<Packet4d>(const Packet4d& a, const Packet4d& b) { return _mm256_min_pd(a,b); }
188 
189 template<> EIGEN_STRONG_INLINE Packet8f pmax<Packet8f>(const Packet8f& a, const Packet8f& b) { return _mm256_max_ps(a,b); }
190 template<> EIGEN_STRONG_INLINE Packet4d pmax<Packet4d>(const Packet4d& a, const Packet4d& b) { return _mm256_max_pd(a,b); }
191 
192 template<> EIGEN_STRONG_INLINE Packet8f pround<Packet8f>(const Packet8f& a) { return _mm256_round_ps(a, _MM_FROUND_CUR_DIRECTION); }
193 template<> EIGEN_STRONG_INLINE Packet4d pround<Packet4d>(const Packet4d& a) { return _mm256_round_pd(a, _MM_FROUND_CUR_DIRECTION); }
194 
195 template<> EIGEN_STRONG_INLINE Packet8f pceil<Packet8f>(const Packet8f& a) { return _mm256_ceil_ps(a); }
196 template<> EIGEN_STRONG_INLINE Packet4d pceil<Packet4d>(const Packet4d& a) { return _mm256_ceil_pd(a); }
197 
198 template<> EIGEN_STRONG_INLINE Packet8f pfloor<Packet8f>(const Packet8f& a) { return _mm256_floor_ps(a); }
199 template<> EIGEN_STRONG_INLINE Packet4d pfloor<Packet4d>(const Packet4d& a) { return _mm256_floor_pd(a); }
200 
201 template<> EIGEN_STRONG_INLINE Packet8f pand<Packet8f>(const Packet8f& a, const Packet8f& b) { return _mm256_and_ps(a,b); }
202 template<> EIGEN_STRONG_INLINE Packet4d pand<Packet4d>(const Packet4d& a, const Packet4d& b) { return _mm256_and_pd(a,b); }
203 
204 template<> EIGEN_STRONG_INLINE Packet8f por<Packet8f>(const Packet8f& a, const Packet8f& b) { return _mm256_or_ps(a,b); }
205 template<> EIGEN_STRONG_INLINE Packet4d por<Packet4d>(const Packet4d& a, const Packet4d& b) { return _mm256_or_pd(a,b); }
206 
207 template<> EIGEN_STRONG_INLINE Packet8f pxor<Packet8f>(const Packet8f& a, const Packet8f& b) { return _mm256_xor_ps(a,b); }
208 template<> EIGEN_STRONG_INLINE Packet4d pxor<Packet4d>(const Packet4d& a, const Packet4d& b) { return _mm256_xor_pd(a,b); }
209 
210 template<> EIGEN_STRONG_INLINE Packet8f pandnot<Packet8f>(const Packet8f& a, const Packet8f& b) { return _mm256_andnot_ps(a,b); }
211 template<> EIGEN_STRONG_INLINE Packet4d pandnot<Packet4d>(const Packet4d& a, const Packet4d& b) { return _mm256_andnot_pd(a,b); }
212 
213 template<> EIGEN_STRONG_INLINE Packet8f pload<Packet8f>(const float* from) { EIGEN_DEBUG_ALIGNED_LOAD return _mm256_load_ps(from); }
214 template<> EIGEN_STRONG_INLINE Packet4d pload<Packet4d>(const double* from) { EIGEN_DEBUG_ALIGNED_LOAD return _mm256_load_pd(from); }
215 template<> EIGEN_STRONG_INLINE Packet8i pload<Packet8i>(const int* from) { EIGEN_DEBUG_ALIGNED_LOAD return _mm256_load_si256(reinterpret_cast<const __m256i*>(from)); }
216 
217 template<> EIGEN_STRONG_INLINE Packet8f ploadu<Packet8f>(const float* from) { EIGEN_DEBUG_UNALIGNED_LOAD return _mm256_loadu_ps(from); }
218 template<> EIGEN_STRONG_INLINE Packet4d ploadu<Packet4d>(const double* from) { EIGEN_DEBUG_UNALIGNED_LOAD return _mm256_loadu_pd(from); }
219 template<> EIGEN_STRONG_INLINE Packet8i ploadu<Packet8i>(const int* from) { EIGEN_DEBUG_UNALIGNED_LOAD return _mm256_loadu_si256(reinterpret_cast<const __m256i*>(from)); }
220 
221 // Loads 4 floats from memory a returns the packet {a0, a0 a1, a1, a2, a2, a3, a3}
222 template<> EIGEN_STRONG_INLINE Packet8f ploaddup<Packet8f>(const float* from)
223 {
224  // TODO try to find a way to avoid the need of a temporary register
225 // Packet8f tmp = _mm256_castps128_ps256(_mm_loadu_ps(from));
226 // tmp = _mm256_insertf128_ps(tmp, _mm_movehl_ps(_mm256_castps256_ps128(tmp),_mm256_castps256_ps128(tmp)), 1);
227 // return _mm256_unpacklo_ps(tmp,tmp);
228 
229  // _mm256_insertf128_ps is very slow on Haswell, thus:
230  Packet8f tmp = _mm256_broadcast_ps((const __m128*)(const void*)from);
231  // mimic an "inplace" permutation of the lower 128bits using a blend
232  tmp = _mm256_blend_ps(tmp,_mm256_castps128_ps256(_mm_permute_ps( _mm256_castps256_ps128(tmp), _MM_SHUFFLE(1,0,1,0))), 15);
233  // then we can perform a consistent permutation on the global register to get everything in shape:
234  return _mm256_permute_ps(tmp, _MM_SHUFFLE(3,3,2,2));
235 }
236 // Loads 2 doubles from memory a returns the packet {a0, a0 a1, a1}
237 template<> EIGEN_STRONG_INLINE Packet4d ploaddup<Packet4d>(const double* from)
238 {
239  Packet4d tmp = _mm256_broadcast_pd((const __m128d*)(const void*)from);
240  return _mm256_permute_pd(tmp, 3<<2);
241 }
242 
243 // Loads 2 floats from memory a returns the packet {a0, a0 a0, a0, a1, a1, a1, a1}
244 template<> EIGEN_STRONG_INLINE Packet8f ploadquad<Packet8f>(const float* from)
245 {
246  Packet8f tmp = _mm256_castps128_ps256(_mm_broadcast_ss(from));
247  return _mm256_insertf128_ps(tmp, _mm_broadcast_ss(from+1), 1);
248 }
249 
250 template<> EIGEN_STRONG_INLINE void pstore<float>(float* to, const Packet8f& from) { EIGEN_DEBUG_ALIGNED_STORE _mm256_store_ps(to, from); }
251 template<> EIGEN_STRONG_INLINE void pstore<double>(double* to, const Packet4d& from) { EIGEN_DEBUG_ALIGNED_STORE _mm256_store_pd(to, from); }
252 template<> EIGEN_STRONG_INLINE void pstore<int>(int* to, const Packet8i& from) { EIGEN_DEBUG_ALIGNED_STORE _mm256_storeu_si256(reinterpret_cast<__m256i*>(to), from); }
253 
254 template<> EIGEN_STRONG_INLINE void pstoreu<float>(float* to, const Packet8f& from) { EIGEN_DEBUG_UNALIGNED_STORE _mm256_storeu_ps(to, from); }
255 template<> EIGEN_STRONG_INLINE void pstoreu<double>(double* to, const Packet4d& from) { EIGEN_DEBUG_UNALIGNED_STORE _mm256_storeu_pd(to, from); }
256 template<> EIGEN_STRONG_INLINE void pstoreu<int>(int* to, const Packet8i& from) { EIGEN_DEBUG_UNALIGNED_STORE _mm256_storeu_si256(reinterpret_cast<__m256i*>(to), from); }
257 
258 // NOTE: leverage _mm256_i32gather_ps and _mm256_i32gather_pd if AVX2 instructions are available
259 // NOTE: for the record the following seems to be slower: return _mm256_i32gather_ps(from, _mm256_set1_epi32(stride), 4);
260 template<> EIGEN_DEVICE_FUNC inline Packet8f pgather<float, Packet8f>(const float* from, Index stride)
261 {
262  return _mm256_set_ps(from[7*stride], from[6*stride], from[5*stride], from[4*stride],
263  from[3*stride], from[2*stride], from[1*stride], from[0*stride]);
264 }
265 template<> EIGEN_DEVICE_FUNC inline Packet4d pgather<double, Packet4d>(const double* from, Index stride)
266 {
267  return _mm256_set_pd(from[3*stride], from[2*stride], from[1*stride], from[0*stride]);
268 }
269 
270 template<> EIGEN_DEVICE_FUNC inline void pscatter<float, Packet8f>(float* to, const Packet8f& from, Index stride)
271 {
272  __m128 low = _mm256_extractf128_ps(from, 0);
273  to[stride*0] = _mm_cvtss_f32(low);
274  to[stride*1] = _mm_cvtss_f32(_mm_shuffle_ps(low, low, 1));
275  to[stride*2] = _mm_cvtss_f32(_mm_shuffle_ps(low, low, 2));
276  to[stride*3] = _mm_cvtss_f32(_mm_shuffle_ps(low, low, 3));
277 
278  __m128 high = _mm256_extractf128_ps(from, 1);
279  to[stride*4] = _mm_cvtss_f32(high);
280  to[stride*5] = _mm_cvtss_f32(_mm_shuffle_ps(high, high, 1));
281  to[stride*6] = _mm_cvtss_f32(_mm_shuffle_ps(high, high, 2));
282  to[stride*7] = _mm_cvtss_f32(_mm_shuffle_ps(high, high, 3));
283 }
284 template<> EIGEN_DEVICE_FUNC inline void pscatter<double, Packet4d>(double* to, const Packet4d& from, Index stride)
285 {
286  __m128d low = _mm256_extractf128_pd(from, 0);
287  to[stride*0] = _mm_cvtsd_f64(low);
288  to[stride*1] = _mm_cvtsd_f64(_mm_shuffle_pd(low, low, 1));
289  __m128d high = _mm256_extractf128_pd(from, 1);
290  to[stride*2] = _mm_cvtsd_f64(high);
291  to[stride*3] = _mm_cvtsd_f64(_mm_shuffle_pd(high, high, 1));
292 }
293 
294 template<> EIGEN_STRONG_INLINE void pstore1<Packet8f>(float* to, const float& a)
295 {
296  Packet8f pa = pset1<Packet8f>(a);
297  pstore(to, pa);
298 }
299 template<> EIGEN_STRONG_INLINE void pstore1<Packet4d>(double* to, const double& a)
300 {
301  Packet4d pa = pset1<Packet4d>(a);
302  pstore(to, pa);
303 }
304 template<> EIGEN_STRONG_INLINE void pstore1<Packet8i>(int* to, const int& a)
305 {
306  Packet8i pa = pset1<Packet8i>(a);
307  pstore(to, pa);
308 }
309 
310 #ifndef EIGEN_VECTORIZE_AVX512
311 template<> EIGEN_STRONG_INLINE void prefetch<float>(const float* addr) { _mm_prefetch((const char*)(addr), _MM_HINT_T0); }
312 template<> EIGEN_STRONG_INLINE void prefetch<double>(const double* addr) { _mm_prefetch((const char*)(addr), _MM_HINT_T0); }
313 template<> EIGEN_STRONG_INLINE void prefetch<int>(const int* addr) { _mm_prefetch((const char*)(addr), _MM_HINT_T0); }
314 #endif
315 
316 template<> EIGEN_STRONG_INLINE float pfirst<Packet8f>(const Packet8f& a) {
317  return _mm_cvtss_f32(_mm256_castps256_ps128(a));
318 }
319 template<> EIGEN_STRONG_INLINE double pfirst<Packet4d>(const Packet4d& a) {
320  return _mm_cvtsd_f64(_mm256_castpd256_pd128(a));
321 }
322 template<> EIGEN_STRONG_INLINE int pfirst<Packet8i>(const Packet8i& a) {
323  return _mm_cvtsi128_si32(_mm256_castsi256_si128(a));
324 }
325 
326 
327 template<> EIGEN_STRONG_INLINE Packet8f preverse(const Packet8f& a)
328 {
329  __m256 tmp = _mm256_shuffle_ps(a,a,0x1b);
330  return _mm256_permute2f128_ps(tmp, tmp, 1);
331 }
332 template<> EIGEN_STRONG_INLINE Packet4d preverse(const Packet4d& a)
333 {
334  __m256d tmp = _mm256_shuffle_pd(a,a,5);
335  return _mm256_permute2f128_pd(tmp, tmp, 1);
336 
337  __m256d swap_halves = _mm256_permute2f128_pd(a,a,1);
338  return _mm256_permute_pd(swap_halves,5);
339 }
340 
341 // pabs should be ok
342 template<> EIGEN_STRONG_INLINE Packet8f pabs(const Packet8f& a)
343 {
344  const Packet8f mask = _mm256_castsi256_ps(_mm256_setr_epi32(0x7FFFFFFF,0x7FFFFFFF,0x7FFFFFFF,0x7FFFFFFF,0x7FFFFFFF,0x7FFFFFFF,0x7FFFFFFF,0x7FFFFFFF));
345  return _mm256_and_ps(a,mask);
346 }
347 template<> EIGEN_STRONG_INLINE Packet4d pabs(const Packet4d& a)
348 {
349  const Packet4d mask = _mm256_castsi256_pd(_mm256_setr_epi32(0xFFFFFFFF,0x7FFFFFFF,0xFFFFFFFF,0x7FFFFFFF,0xFFFFFFFF,0x7FFFFFFF,0xFFFFFFFF,0x7FFFFFFF));
350  return _mm256_and_pd(a,mask);
351 }
352 
353 // preduxp should be ok
354 // FIXME: why is this ok? why isn't the simply implementation working as expected?
355 template<> EIGEN_STRONG_INLINE Packet8f preduxp<Packet8f>(const Packet8f* vecs)
356 {
357  __m256 hsum1 = _mm256_hadd_ps(vecs[0], vecs[1]);
358  __m256 hsum2 = _mm256_hadd_ps(vecs[2], vecs[3]);
359  __m256 hsum3 = _mm256_hadd_ps(vecs[4], vecs[5]);
360  __m256 hsum4 = _mm256_hadd_ps(vecs[6], vecs[7]);
361 
362  __m256 hsum5 = _mm256_hadd_ps(hsum1, hsum1);
363  __m256 hsum6 = _mm256_hadd_ps(hsum2, hsum2);
364  __m256 hsum7 = _mm256_hadd_ps(hsum3, hsum3);
365  __m256 hsum8 = _mm256_hadd_ps(hsum4, hsum4);
366 
367  __m256 perm1 = _mm256_permute2f128_ps(hsum5, hsum5, 0x23);
368  __m256 perm2 = _mm256_permute2f128_ps(hsum6, hsum6, 0x23);
369  __m256 perm3 = _mm256_permute2f128_ps(hsum7, hsum7, 0x23);
370  __m256 perm4 = _mm256_permute2f128_ps(hsum8, hsum8, 0x23);
371 
372  __m256 sum1 = _mm256_add_ps(perm1, hsum5);
373  __m256 sum2 = _mm256_add_ps(perm2, hsum6);
374  __m256 sum3 = _mm256_add_ps(perm3, hsum7);
375  __m256 sum4 = _mm256_add_ps(perm4, hsum8);
376 
377  __m256 blend1 = _mm256_blend_ps(sum1, sum2, 0xcc);
378  __m256 blend2 = _mm256_blend_ps(sum3, sum4, 0xcc);
379 
380  __m256 final = _mm256_blend_ps(blend1, blend2, 0xf0);
381  return final;
382 }
383 template<> EIGEN_STRONG_INLINE Packet4d preduxp<Packet4d>(const Packet4d* vecs)
384 {
385  Packet4d tmp0, tmp1;
386 
387  tmp0 = _mm256_hadd_pd(vecs[0], vecs[1]);
388  tmp0 = _mm256_add_pd(tmp0, _mm256_permute2f128_pd(tmp0, tmp0, 1));
389 
390  tmp1 = _mm256_hadd_pd(vecs[2], vecs[3]);
391  tmp1 = _mm256_add_pd(tmp1, _mm256_permute2f128_pd(tmp1, tmp1, 1));
392 
393  return _mm256_blend_pd(tmp0, tmp1, 0xC);
394 }
395 
396 template<> EIGEN_STRONG_INLINE float predux<Packet8f>(const Packet8f& a)
397 {
398  Packet8f tmp0 = _mm256_hadd_ps(a,_mm256_permute2f128_ps(a,a,1));
399  tmp0 = _mm256_hadd_ps(tmp0,tmp0);
400  return pfirst(_mm256_hadd_ps(tmp0, tmp0));
401 }
402 template<> EIGEN_STRONG_INLINE double predux<Packet4d>(const Packet4d& a)
403 {
404  Packet4d tmp0 = _mm256_hadd_pd(a,_mm256_permute2f128_pd(a,a,1));
405  return pfirst(_mm256_hadd_pd(tmp0,tmp0));
406 }
407 
408 template<> EIGEN_STRONG_INLINE Packet4f predux_downto4<Packet8f>(const Packet8f& a)
409 {
410  return _mm_add_ps(_mm256_castps256_ps128(a),_mm256_extractf128_ps(a,1));
411 }
412 
413 template<> EIGEN_STRONG_INLINE float predux_mul<Packet8f>(const Packet8f& a)
414 {
415  Packet8f tmp;
416  tmp = _mm256_mul_ps(a, _mm256_permute2f128_ps(a,a,1));
417  tmp = _mm256_mul_ps(tmp, _mm256_shuffle_ps(tmp,tmp,_MM_SHUFFLE(1,0,3,2)));
418  return pfirst(_mm256_mul_ps(tmp, _mm256_shuffle_ps(tmp,tmp,1)));
419 }
420 template<> EIGEN_STRONG_INLINE double predux_mul<Packet4d>(const Packet4d& a)
421 {
422  Packet4d tmp;
423  tmp = _mm256_mul_pd(a, _mm256_permute2f128_pd(a,a,1));
424  return pfirst(_mm256_mul_pd(tmp, _mm256_shuffle_pd(tmp,tmp,1)));
425 }
426 
427 template<> EIGEN_STRONG_INLINE float predux_min<Packet8f>(const Packet8f& a)
428 {
429  Packet8f tmp = _mm256_min_ps(a, _mm256_permute2f128_ps(a,a,1));
430  tmp = _mm256_min_ps(tmp, _mm256_shuffle_ps(tmp,tmp,_MM_SHUFFLE(1,0,3,2)));
431  return pfirst(_mm256_min_ps(tmp, _mm256_shuffle_ps(tmp,tmp,1)));
432 }
433 template<> EIGEN_STRONG_INLINE double predux_min<Packet4d>(const Packet4d& a)
434 {
435  Packet4d tmp = _mm256_min_pd(a, _mm256_permute2f128_pd(a,a,1));
436  return pfirst(_mm256_min_pd(tmp, _mm256_shuffle_pd(tmp, tmp, 1)));
437 }
438 
439 template<> EIGEN_STRONG_INLINE float predux_max<Packet8f>(const Packet8f& a)
440 {
441  Packet8f tmp = _mm256_max_ps(a, _mm256_permute2f128_ps(a,a,1));
442  tmp = _mm256_max_ps(tmp, _mm256_shuffle_ps(tmp,tmp,_MM_SHUFFLE(1,0,3,2)));
443  return pfirst(_mm256_max_ps(tmp, _mm256_shuffle_ps(tmp,tmp,1)));
444 }
445 
446 template<> EIGEN_STRONG_INLINE double predux_max<Packet4d>(const Packet4d& a)
447 {
448  Packet4d tmp = _mm256_max_pd(a, _mm256_permute2f128_pd(a,a,1));
449  return pfirst(_mm256_max_pd(tmp, _mm256_shuffle_pd(tmp, tmp, 1)));
450 }
451 
452 
453 template<int Offset>
454 struct palign_impl<Offset,Packet8f>
455 {
456  static EIGEN_STRONG_INLINE void run(Packet8f& first, const Packet8f& second)
457  {
458  if (Offset==1)
459  {
460  first = _mm256_blend_ps(first, second, 1);
461  Packet8f tmp1 = _mm256_permute_ps (first, _MM_SHUFFLE(0,3,2,1));
462  Packet8f tmp2 = _mm256_permute2f128_ps (tmp1, tmp1, 1);
463  first = _mm256_blend_ps(tmp1, tmp2, 0x88);
464  }
465  else if (Offset==2)
466  {
467  first = _mm256_blend_ps(first, second, 3);
468  Packet8f tmp1 = _mm256_permute_ps (first, _MM_SHUFFLE(1,0,3,2));
469  Packet8f tmp2 = _mm256_permute2f128_ps (tmp1, tmp1, 1);
470  first = _mm256_blend_ps(tmp1, tmp2, 0xcc);
471  }
472  else if (Offset==3)
473  {
474  first = _mm256_blend_ps(first, second, 7);
475  Packet8f tmp1 = _mm256_permute_ps (first, _MM_SHUFFLE(2,1,0,3));
476  Packet8f tmp2 = _mm256_permute2f128_ps (tmp1, tmp1, 1);
477  first = _mm256_blend_ps(tmp1, tmp2, 0xee);
478  }
479  else if (Offset==4)
480  {
481  first = _mm256_blend_ps(first, second, 15);
482  Packet8f tmp1 = _mm256_permute_ps (first, _MM_SHUFFLE(3,2,1,0));
483  Packet8f tmp2 = _mm256_permute2f128_ps (tmp1, tmp1, 1);
484  first = _mm256_permute_ps(tmp2, _MM_SHUFFLE(3,2,1,0));
485  }
486  else if (Offset==5)
487  {
488  first = _mm256_blend_ps(first, second, 31);
489  first = _mm256_permute2f128_ps(first, first, 1);
490  Packet8f tmp = _mm256_permute_ps (first, _MM_SHUFFLE(0,3,2,1));
491  first = _mm256_permute2f128_ps(tmp, tmp, 1);
492  first = _mm256_blend_ps(tmp, first, 0x88);
493  }
494  else if (Offset==6)
495  {
496  first = _mm256_blend_ps(first, second, 63);
497  first = _mm256_permute2f128_ps(first, first, 1);
498  Packet8f tmp = _mm256_permute_ps (first, _MM_SHUFFLE(1,0,3,2));
499  first = _mm256_permute2f128_ps(tmp, tmp, 1);
500  first = _mm256_blend_ps(tmp, first, 0xcc);
501  }
502  else if (Offset==7)
503  {
504  first = _mm256_blend_ps(first, second, 127);
505  first = _mm256_permute2f128_ps(first, first, 1);
506  Packet8f tmp = _mm256_permute_ps (first, _MM_SHUFFLE(2,1,0,3));
507  first = _mm256_permute2f128_ps(tmp, tmp, 1);
508  first = _mm256_blend_ps(tmp, first, 0xee);
509  }
510  }
511 };
512 
513 template<int Offset>
514 struct palign_impl<Offset,Packet4d>
515 {
516  static EIGEN_STRONG_INLINE void run(Packet4d& first, const Packet4d& second)
517  {
518  if (Offset==1)
519  {
520  first = _mm256_blend_pd(first, second, 1);
521  __m256d tmp = _mm256_permute_pd(first, 5);
522  first = _mm256_permute2f128_pd(tmp, tmp, 1);
523  first = _mm256_blend_pd(tmp, first, 0xA);
524  }
525  else if (Offset==2)
526  {
527  first = _mm256_blend_pd(first, second, 3);
528  first = _mm256_permute2f128_pd(first, first, 1);
529  }
530  else if (Offset==3)
531  {
532  first = _mm256_blend_pd(first, second, 7);
533  __m256d tmp = _mm256_permute_pd(first, 5);
534  first = _mm256_permute2f128_pd(tmp, tmp, 1);
535  first = _mm256_blend_pd(tmp, first, 5);
536  }
537  }
538 };
539 
540 EIGEN_DEVICE_FUNC inline void
541 ptranspose(PacketBlock<Packet8f,8>& kernel) {
542  __m256 T0 = _mm256_unpacklo_ps(kernel.packet[0], kernel.packet[1]);
543  __m256 T1 = _mm256_unpackhi_ps(kernel.packet[0], kernel.packet[1]);
544  __m256 T2 = _mm256_unpacklo_ps(kernel.packet[2], kernel.packet[3]);
545  __m256 T3 = _mm256_unpackhi_ps(kernel.packet[2], kernel.packet[3]);
546  __m256 T4 = _mm256_unpacklo_ps(kernel.packet[4], kernel.packet[5]);
547  __m256 T5 = _mm256_unpackhi_ps(kernel.packet[4], kernel.packet[5]);
548  __m256 T6 = _mm256_unpacklo_ps(kernel.packet[6], kernel.packet[7]);
549  __m256 T7 = _mm256_unpackhi_ps(kernel.packet[6], kernel.packet[7]);
550  __m256 S0 = _mm256_shuffle_ps(T0,T2,_MM_SHUFFLE(1,0,1,0));
551  __m256 S1 = _mm256_shuffle_ps(T0,T2,_MM_SHUFFLE(3,2,3,2));
552  __m256 S2 = _mm256_shuffle_ps(T1,T3,_MM_SHUFFLE(1,0,1,0));
553  __m256 S3 = _mm256_shuffle_ps(T1,T3,_MM_SHUFFLE(3,2,3,2));
554  __m256 S4 = _mm256_shuffle_ps(T4,T6,_MM_SHUFFLE(1,0,1,0));
555  __m256 S5 = _mm256_shuffle_ps(T4,T6,_MM_SHUFFLE(3,2,3,2));
556  __m256 S6 = _mm256_shuffle_ps(T5,T7,_MM_SHUFFLE(1,0,1,0));
557  __m256 S7 = _mm256_shuffle_ps(T5,T7,_MM_SHUFFLE(3,2,3,2));
558  kernel.packet[0] = _mm256_permute2f128_ps(S0, S4, 0x20);
559  kernel.packet[1] = _mm256_permute2f128_ps(S1, S5, 0x20);
560  kernel.packet[2] = _mm256_permute2f128_ps(S2, S6, 0x20);
561  kernel.packet[3] = _mm256_permute2f128_ps(S3, S7, 0x20);
562  kernel.packet[4] = _mm256_permute2f128_ps(S0, S4, 0x31);
563  kernel.packet[5] = _mm256_permute2f128_ps(S1, S5, 0x31);
564  kernel.packet[6] = _mm256_permute2f128_ps(S2, S6, 0x31);
565  kernel.packet[7] = _mm256_permute2f128_ps(S3, S7, 0x31);
566 }
567 
568 EIGEN_DEVICE_FUNC inline void
569 ptranspose(PacketBlock<Packet8f,4>& kernel) {
570  __m256 T0 = _mm256_unpacklo_ps(kernel.packet[0], kernel.packet[1]);
571  __m256 T1 = _mm256_unpackhi_ps(kernel.packet[0], kernel.packet[1]);
572  __m256 T2 = _mm256_unpacklo_ps(kernel.packet[2], kernel.packet[3]);
573  __m256 T3 = _mm256_unpackhi_ps(kernel.packet[2], kernel.packet[3]);
574 
575  __m256 S0 = _mm256_shuffle_ps(T0,T2,_MM_SHUFFLE(1,0,1,0));
576  __m256 S1 = _mm256_shuffle_ps(T0,T2,_MM_SHUFFLE(3,2,3,2));
577  __m256 S2 = _mm256_shuffle_ps(T1,T3,_MM_SHUFFLE(1,0,1,0));
578  __m256 S3 = _mm256_shuffle_ps(T1,T3,_MM_SHUFFLE(3,2,3,2));
579 
580  kernel.packet[0] = _mm256_permute2f128_ps(S0, S1, 0x20);
581  kernel.packet[1] = _mm256_permute2f128_ps(S2, S3, 0x20);
582  kernel.packet[2] = _mm256_permute2f128_ps(S0, S1, 0x31);
583  kernel.packet[3] = _mm256_permute2f128_ps(S2, S3, 0x31);
584 }
585 
586 EIGEN_DEVICE_FUNC inline void
587 ptranspose(PacketBlock<Packet4d,4>& kernel) {
588  __m256d T0 = _mm256_shuffle_pd(kernel.packet[0], kernel.packet[1], 15);
589  __m256d T1 = _mm256_shuffle_pd(kernel.packet[0], kernel.packet[1], 0);
590  __m256d T2 = _mm256_shuffle_pd(kernel.packet[2], kernel.packet[3], 15);
591  __m256d T3 = _mm256_shuffle_pd(kernel.packet[2], kernel.packet[3], 0);
592 
593  kernel.packet[1] = _mm256_permute2f128_pd(T0, T2, 32);
594  kernel.packet[3] = _mm256_permute2f128_pd(T0, T2, 49);
595  kernel.packet[0] = _mm256_permute2f128_pd(T1, T3, 32);
596  kernel.packet[2] = _mm256_permute2f128_pd(T1, T3, 49);
597 }
598 
599 template<> EIGEN_STRONG_INLINE Packet8f pblend(const Selector<8>& ifPacket, const Packet8f& thenPacket, const Packet8f& elsePacket) {
600  const __m256 zero = _mm256_setzero_ps();
601  const __m256 select = _mm256_set_ps(ifPacket.select[7], ifPacket.select[6], ifPacket.select[5], ifPacket.select[4], ifPacket.select[3], ifPacket.select[2], ifPacket.select[1], ifPacket.select[0]);
602  __m256 false_mask = _mm256_cmp_ps(select, zero, _CMP_EQ_UQ);
603  return _mm256_blendv_ps(thenPacket, elsePacket, false_mask);
604 }
605 template<> EIGEN_STRONG_INLINE Packet4d pblend(const Selector<4>& ifPacket, const Packet4d& thenPacket, const Packet4d& elsePacket) {
606  const __m256d zero = _mm256_setzero_pd();
607  const __m256d select = _mm256_set_pd(ifPacket.select[3], ifPacket.select[2], ifPacket.select[1], ifPacket.select[0]);
608  __m256d false_mask = _mm256_cmp_pd(select, zero, _CMP_EQ_UQ);
609  return _mm256_blendv_pd(thenPacket, elsePacket, false_mask);
610 }
611 
612 template<> EIGEN_STRONG_INLINE Packet8f pinsertfirst(const Packet8f& a, float b)
613 {
614  return _mm256_blend_ps(a,pset1<Packet8f>(b),1);
615 }
616 
617 template<> EIGEN_STRONG_INLINE Packet4d pinsertfirst(const Packet4d& a, double b)
618 {
619  return _mm256_blend_pd(a,pset1<Packet4d>(b),1);
620 }
621 
622 template<> EIGEN_STRONG_INLINE Packet8f pinsertlast(const Packet8f& a, float b)
623 {
624  return _mm256_blend_ps(a,pset1<Packet8f>(b),(1<<7));
625 }
626 
627 template<> EIGEN_STRONG_INLINE Packet4d pinsertlast(const Packet4d& a, double b)
628 {
629  return _mm256_blend_pd(a,pset1<Packet4d>(b),(1<<3));
630 }
631 
632 } // end namespace internal
633 
634 } // end namespace Eigen
635 
636 #endif // EIGEN_PACKET_MATH_AVX_H
Definition: Half.h:76
Definition: XprHelper.h:158
Namespace containing all symbols from the Eigen library.
Definition: bench_norm.cpp:85
Data pointer is aligned on a 32 bytes boundary.
Definition: Constants.h:231
Definition: GenericPacketMath.h:96
Definition: GenericPacketMath.h:42
Definition: Meta.h:85
EIGEN_DEFAULT_DENSE_INDEX_TYPE Index
The Index type as used for the API.
Definition: Meta.h:33
Definition: GenericPacketMath.h:539
Definition: BandTriangularSolver.h:13
Definition: XprHelper.h:666
Definition: GenericPacketMath.h:492
Definition: PacketMath.h:44
Definition: GenericPacketMath.h:552