compbio
Assign_MKL.h
1 /*
2  Copyright (c) 2011, Intel Corporation. All rights reserved.
3  Copyright (C) 2015 Gael Guennebaud <gael.guennebaud@inria.fr>
4 
5  Redistribution and use in source and binary forms, with or without modification,
6  are permitted provided that the following conditions are met:
7 
8  * Redistributions of source code must retain the above copyright notice, this
9  list of conditions and the following disclaimer.
10  * Redistributions in binary form must reproduce the above copyright notice,
11  this list of conditions and the following disclaimer in the documentation
12  and/or other materials provided with the distribution.
13  * Neither the name of Intel Corporation nor the names of its contributors may
14  be used to endorse or promote products derived from this software without
15  specific prior written permission.
16 
17  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
18  ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
19  WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
20  DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
21  ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
22  (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
23  LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
24  ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25  (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
26  SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 
28  ********************************************************************************
29  * Content : Eigen bindings to Intel(R) MKL
30  * MKL VML support for coefficient-wise unary Eigen expressions like a=b.sin()
31  ********************************************************************************
32 */
33 
34 #ifndef EIGEN_ASSIGN_VML_H
35 #define EIGEN_ASSIGN_VML_H
36 
37 namespace Eigen {
38 
39 namespace internal {
40 
41 template<typename Dst, typename Src>
43 {
44  private:
45  enum {
46  DstHasDirectAccess = Dst::Flags & DirectAccessBit,
47  SrcHasDirectAccess = Src::Flags & DirectAccessBit,
48  StorageOrdersAgree = (int(Dst::IsRowMajor) == int(Src::IsRowMajor)),
49  InnerSize = int(Dst::IsVectorAtCompileTime) ? int(Dst::SizeAtCompileTime)
50  : int(Dst::Flags)&RowMajorBit ? int(Dst::ColsAtCompileTime)
51  : int(Dst::RowsAtCompileTime),
52  InnerMaxSize = int(Dst::IsVectorAtCompileTime) ? int(Dst::MaxSizeAtCompileTime)
53  : int(Dst::Flags)&RowMajorBit ? int(Dst::MaxColsAtCompileTime)
54  : int(Dst::MaxRowsAtCompileTime),
55  MaxSizeAtCompileTime = Dst::SizeAtCompileTime,
56 
57  MightEnableVml = StorageOrdersAgree && DstHasDirectAccess && SrcHasDirectAccess && Src::InnerStrideAtCompileTime==1 && Dst::InnerStrideAtCompileTime==1,
58  MightLinearize = MightEnableVml && (int(Dst::Flags) & int(Src::Flags) & LinearAccessBit),
59  VmlSize = MightLinearize ? MaxSizeAtCompileTime : InnerMaxSize,
60  LargeEnough = VmlSize==Dynamic || VmlSize>=EIGEN_MKL_VML_THRESHOLD
61  };
62  public:
63  enum {
64  EnableVml = MightEnableVml && LargeEnough,
65  Traversal = MightLinearize ? LinearTraversal : DefaultTraversal
66  };
67 };
68 
69 #define EIGEN_PP_EXPAND(ARG) ARG
70 #if !defined (EIGEN_FAST_MATH) || (EIGEN_FAST_MATH != 1)
71 #define EIGEN_VMLMODE_EXPAND_LA , VML_HA
72 #else
73 #define EIGEN_VMLMODE_EXPAND_LA , VML_LA
74 #endif
75 
76 #define EIGEN_VMLMODE_EXPAND__
77 
78 #define EIGEN_VMLMODE_PREFIX_LA vm
79 #define EIGEN_VMLMODE_PREFIX__ v
80 #define EIGEN_VMLMODE_PREFIX(VMLMODE) EIGEN_CAT(EIGEN_VMLMODE_PREFIX_,VMLMODE)
81 
82 #define EIGEN_MKL_VML_DECLARE_UNARY_CALL(EIGENOP, VMLOP, EIGENTYPE, VMLTYPE, VMLMODE) \
83  template< typename DstXprType, typename SrcXprNested> \
84  struct Assignment<DstXprType, CwiseUnaryOp<scalar_##EIGENOP##_op<EIGENTYPE>, SrcXprNested>, assign_op<EIGENTYPE,EIGENTYPE>, \
85  Dense2Dense, typename enable_if<vml_assign_traits<DstXprType,SrcXprNested>::EnableVml>::type> { \
86  typedef CwiseUnaryOp<scalar_##EIGENOP##_op<EIGENTYPE>, SrcXprNested> SrcXprType; \
87  static void run(DstXprType &dst, const SrcXprType &src, const assign_op<EIGENTYPE,EIGENTYPE> &/*func*/) { \
88  eigen_assert(dst.rows() == src.rows() && dst.cols() == src.cols()); \
89  if(vml_assign_traits<DstXprType,SrcXprNested>::Traversal==LinearTraversal) { \
90  VMLOP(dst.size(), (const VMLTYPE*)src.nestedExpression().data(), \
91  (VMLTYPE*)dst.data() EIGEN_PP_EXPAND(EIGEN_VMLMODE_EXPAND_##VMLMODE) ); \
92  } else { \
93  const Index outerSize = dst.outerSize(); \
94  for(Index outer = 0; outer < outerSize; ++outer) { \
95  const EIGENTYPE *src_ptr = src.IsRowMajor ? &(src.nestedExpression().coeffRef(outer,0)) : \
96  &(src.nestedExpression().coeffRef(0, outer)); \
97  EIGENTYPE *dst_ptr = dst.IsRowMajor ? &(dst.coeffRef(outer,0)) : &(dst.coeffRef(0, outer)); \
98  VMLOP( dst.innerSize(), (const VMLTYPE*)src_ptr, \
99  (VMLTYPE*)dst_ptr EIGEN_PP_EXPAND(EIGEN_VMLMODE_EXPAND_##VMLMODE)); \
100  } \
101  } \
102  } \
103  }; \
104 
105 
106 #define EIGEN_MKL_VML_DECLARE_UNARY_CALLS_REAL(EIGENOP, VMLOP, VMLMODE) \
107  EIGEN_MKL_VML_DECLARE_UNARY_CALL(EIGENOP, EIGEN_CAT(EIGEN_VMLMODE_PREFIX(VMLMODE),s##VMLOP), float, float, VMLMODE) \
108  EIGEN_MKL_VML_DECLARE_UNARY_CALL(EIGENOP, EIGEN_CAT(EIGEN_VMLMODE_PREFIX(VMLMODE),d##VMLOP), double, double, VMLMODE)
109 
110 #define EIGEN_MKL_VML_DECLARE_UNARY_CALLS_CPLX(EIGENOP, VMLOP, VMLMODE) \
111  EIGEN_MKL_VML_DECLARE_UNARY_CALL(EIGENOP, EIGEN_CAT(EIGEN_VMLMODE_PREFIX(VMLMODE),c##VMLOP), scomplex, MKL_Complex8, VMLMODE) \
112  EIGEN_MKL_VML_DECLARE_UNARY_CALL(EIGENOP, EIGEN_CAT(EIGEN_VMLMODE_PREFIX(VMLMODE),z##VMLOP), dcomplex, MKL_Complex16, VMLMODE)
113 
114 #define EIGEN_MKL_VML_DECLARE_UNARY_CALLS(EIGENOP, VMLOP, VMLMODE) \
115  EIGEN_MKL_VML_DECLARE_UNARY_CALLS_REAL(EIGENOP, VMLOP, VMLMODE) \
116  EIGEN_MKL_VML_DECLARE_UNARY_CALLS_CPLX(EIGENOP, VMLOP, VMLMODE)
117 
118 
119 EIGEN_MKL_VML_DECLARE_UNARY_CALLS(sin, Sin, LA)
120 EIGEN_MKL_VML_DECLARE_UNARY_CALLS(asin, Asin, LA)
121 EIGEN_MKL_VML_DECLARE_UNARY_CALLS(sinh, Sinh, LA)
122 EIGEN_MKL_VML_DECLARE_UNARY_CALLS(cos, Cos, LA)
123 EIGEN_MKL_VML_DECLARE_UNARY_CALLS(acos, Acos, LA)
124 EIGEN_MKL_VML_DECLARE_UNARY_CALLS(cosh, Cosh, LA)
125 EIGEN_MKL_VML_DECLARE_UNARY_CALLS(tan, Tan, LA)
126 EIGEN_MKL_VML_DECLARE_UNARY_CALLS(atan, Atan, LA)
127 EIGEN_MKL_VML_DECLARE_UNARY_CALLS(tanh, Tanh, LA)
128 // EIGEN_MKL_VML_DECLARE_UNARY_CALLS(abs, Abs, _)
129 EIGEN_MKL_VML_DECLARE_UNARY_CALLS(exp, Exp, LA)
130 EIGEN_MKL_VML_DECLARE_UNARY_CALLS(log, Ln, LA)
131 EIGEN_MKL_VML_DECLARE_UNARY_CALLS(log10, Log10, LA)
132 EIGEN_MKL_VML_DECLARE_UNARY_CALLS(sqrt, Sqrt, _)
133 
134 EIGEN_MKL_VML_DECLARE_UNARY_CALLS_REAL(square, Sqr, _)
135 EIGEN_MKL_VML_DECLARE_UNARY_CALLS_CPLX(arg, Arg, _)
136 EIGEN_MKL_VML_DECLARE_UNARY_CALLS_REAL(round, Round, _)
137 EIGEN_MKL_VML_DECLARE_UNARY_CALLS_REAL(floor, Floor, _)
138 EIGEN_MKL_VML_DECLARE_UNARY_CALLS_REAL(ceil, Ceil, _)
139 
140 #define EIGEN_MKL_VML_DECLARE_POW_CALL(EIGENOP, VMLOP, EIGENTYPE, VMLTYPE, VMLMODE) \
141  template< typename DstXprType, typename SrcXprNested, typename Plain> \
142  struct Assignment<DstXprType, CwiseBinaryOp<scalar_##EIGENOP##_op<EIGENTYPE,EIGENTYPE>, SrcXprNested, \
143  const CwiseNullaryOp<internal::scalar_constant_op<EIGENTYPE>,Plain> >, assign_op<EIGENTYPE,EIGENTYPE>, \
144  Dense2Dense, typename enable_if<vml_assign_traits<DstXprType,SrcXprNested>::EnableVml>::type> { \
145  typedef CwiseBinaryOp<scalar_##EIGENOP##_op<EIGENTYPE,EIGENTYPE>, SrcXprNested, \
146  const CwiseNullaryOp<internal::scalar_constant_op<EIGENTYPE>,Plain> > SrcXprType; \
147  static void run(DstXprType &dst, const SrcXprType &src, const assign_op<EIGENTYPE,EIGENTYPE> &/*func*/) { \
148  eigen_assert(dst.rows() == src.rows() && dst.cols() == src.cols()); \
149  VMLTYPE exponent = reinterpret_cast<const VMLTYPE&>(src.rhs().functor().m_other); \
150  if(vml_assign_traits<DstXprType,SrcXprNested>::Traversal==LinearTraversal) \
151  { \
152  VMLOP( dst.size(), (const VMLTYPE*)src.lhs().data(), exponent, \
153  (VMLTYPE*)dst.data() EIGEN_PP_EXPAND(EIGEN_VMLMODE_EXPAND_##VMLMODE) ); \
154  } else { \
155  const Index outerSize = dst.outerSize(); \
156  for(Index outer = 0; outer < outerSize; ++outer) { \
157  const EIGENTYPE *src_ptr = src.IsRowMajor ? &(src.lhs().coeffRef(outer,0)) : \
158  &(src.lhs().coeffRef(0, outer)); \
159  EIGENTYPE *dst_ptr = dst.IsRowMajor ? &(dst.coeffRef(outer,0)) : &(dst.coeffRef(0, outer)); \
160  VMLOP( dst.innerSize(), (const VMLTYPE*)src_ptr, exponent, \
161  (VMLTYPE*)dst_ptr EIGEN_PP_EXPAND(EIGEN_VMLMODE_EXPAND_##VMLMODE)); \
162  } \
163  } \
164  } \
165  };
166 
167 EIGEN_MKL_VML_DECLARE_POW_CALL(pow, vmsPowx, float, float, LA)
168 EIGEN_MKL_VML_DECLARE_POW_CALL(pow, vmdPowx, double, double, LA)
169 EIGEN_MKL_VML_DECLARE_POW_CALL(pow, vmcPowx, scomplex, MKL_Complex8, LA)
170 EIGEN_MKL_VML_DECLARE_POW_CALL(pow, vmzPowx, dcomplex, MKL_Complex16, LA)
171 
172 } // end namespace internal
173 
174 } // end namespace Eigen
175 
176 #endif // EIGEN_ASSIGN_VML_H
const unsigned int DirectAccessBit
Means that the underlying array of coefficients can be directly accessed as a plain strided array...
Definition: Constants.h:150
Namespace containing all symbols from the Eigen library.
Definition: bench_norm.cpp:85
const unsigned int RowMajorBit
for a matrix, this means that the storage order is row-major.
Definition: Constants.h:61
Definition: BandTriangularSolver.h:13
Definition: Assign_MKL.h:42
const int Dynamic
This value means that a positive quantity (e.g., a size) is not known at compile-time, and that instead the value is stored in some runtime variable.
Definition: Constants.h:21
const unsigned int LinearAccessBit
Short version: means the expression can be seen as 1D vector.
Definition: Constants.h:125