compbio
AutoDiffScalar.h
1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr>
5 //
6 // This Source Code Form is subject to the terms of the Mozilla
7 // Public License v. 2.0. If a copy of the MPL was not distributed
8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9 
10 #ifndef EIGEN_AUTODIFF_SCALAR_H
11 #define EIGEN_AUTODIFF_SCALAR_H
12 
13 namespace Eigen {
14 
15 namespace internal {
16 
17 template<typename A, typename B>
19  static void run(A&, B&) {}
20 };
21 
22 // resize a to match b is a.size()==0, and conversely.
23 template<typename A, typename B>
24 void make_coherent(const A& a, const B&b)
25 {
26  make_coherent_impl<A,B>::run(a.const_cast_derived(), b.const_cast_derived());
27 }
28 
29 template<typename _DerType, bool Enable> struct auto_diff_special_op;
30 
31 } // end namespace internal
32 
33 template<typename _DerType> class AutoDiffScalar;
34 
35 template<typename NewDerType>
36 inline AutoDiffScalar<NewDerType> MakeAutoDiffScalar(const typename NewDerType::Scalar& value, const NewDerType &der) {
37  return AutoDiffScalar<NewDerType>(value,der);
38 }
39 
66 template<typename _DerType>
67 class AutoDiffScalar
69  <_DerType, !internal::is_same<typename internal::traits<typename internal::remove_all<_DerType>::type>::Scalar,
70  typename NumTraits<typename internal::traits<typename internal::remove_all<_DerType>::type>::Scalar>::Real>::value>
71 {
72  public:
77  typedef typename internal::traits<DerType>::Scalar Scalar;
78  typedef typename NumTraits<Scalar>::Real Real;
79 
80  using Base::operator+;
81  using Base::operator*;
82 
85 
88  AutoDiffScalar(const Scalar& value, int nbDer, int derNumber)
89  : m_value(value), m_derivatives(DerType::Zero(nbDer))
90  {
91  m_derivatives.coeffRef(derNumber) = Scalar(1);
92  }
93 
96  /*explicit*/ AutoDiffScalar(const Real& value)
97  : m_value(value)
98  {
99  if(m_derivatives.size()>0)
100  m_derivatives.setZero();
101  }
102 
104  AutoDiffScalar(const Scalar& value, const DerType& der)
105  : m_value(value), m_derivatives(der)
106  {}
107 
108  template<typename OtherDerType>
110 #ifndef EIGEN_PARSED_BY_DOXYGEN
111  , typename internal::enable_if<internal::is_same<Scalar, typename internal::traits<typename internal::remove_all<OtherDerType>::type>::Scalar>::value,void*>::type = 0
112 #endif
113  )
114  : m_value(other.value()), m_derivatives(other.derivatives())
115  {}
116 
117  friend std::ostream & operator << (std::ostream & s, const AutoDiffScalar& a)
118  {
119  return s << a.value();
120  }
121 
122  AutoDiffScalar(const AutoDiffScalar& other)
123  : m_value(other.value()), m_derivatives(other.derivatives())
124  {}
125 
126  template<typename OtherDerType>
127  inline AutoDiffScalar& operator=(const AutoDiffScalar<OtherDerType>& other)
128  {
129  m_value = other.value();
130  m_derivatives = other.derivatives();
131  return *this;
132  }
133 
134  inline AutoDiffScalar& operator=(const AutoDiffScalar& other)
135  {
136  m_value = other.value();
137  m_derivatives = other.derivatives();
138  return *this;
139  }
140 
141  inline AutoDiffScalar& operator=(const Scalar& other)
142  {
143  m_value = other;
144  if(m_derivatives.size()>0)
145  m_derivatives.setZero();
146  return *this;
147  }
148 
149 // inline operator const Scalar& () const { return m_value; }
150 // inline operator Scalar& () { return m_value; }
151 
152  inline const Scalar& value() const { return m_value; }
153  inline Scalar& value() { return m_value; }
154 
155  inline const DerType& derivatives() const { return m_derivatives; }
156  inline DerType& derivatives() { return m_derivatives; }
157 
158  inline bool operator< (const Scalar& other) const { return m_value < other; }
159  inline bool operator<=(const Scalar& other) const { return m_value <= other; }
160  inline bool operator> (const Scalar& other) const { return m_value > other; }
161  inline bool operator>=(const Scalar& other) const { return m_value >= other; }
162  inline bool operator==(const Scalar& other) const { return m_value == other; }
163  inline bool operator!=(const Scalar& other) const { return m_value != other; }
164 
165  friend inline bool operator< (const Scalar& a, const AutoDiffScalar& b) { return a < b.value(); }
166  friend inline bool operator<=(const Scalar& a, const AutoDiffScalar& b) { return a <= b.value(); }
167  friend inline bool operator> (const Scalar& a, const AutoDiffScalar& b) { return a > b.value(); }
168  friend inline bool operator>=(const Scalar& a, const AutoDiffScalar& b) { return a >= b.value(); }
169  friend inline bool operator==(const Scalar& a, const AutoDiffScalar& b) { return a == b.value(); }
170  friend inline bool operator!=(const Scalar& a, const AutoDiffScalar& b) { return a != b.value(); }
171 
172  template<typename OtherDerType> inline bool operator< (const AutoDiffScalar<OtherDerType>& b) const { return m_value < b.value(); }
173  template<typename OtherDerType> inline bool operator<=(const AutoDiffScalar<OtherDerType>& b) const { return m_value <= b.value(); }
174  template<typename OtherDerType> inline bool operator> (const AutoDiffScalar<OtherDerType>& b) const { return m_value > b.value(); }
175  template<typename OtherDerType> inline bool operator>=(const AutoDiffScalar<OtherDerType>& b) const { return m_value >= b.value(); }
176  template<typename OtherDerType> inline bool operator==(const AutoDiffScalar<OtherDerType>& b) const { return m_value == b.value(); }
177  template<typename OtherDerType> inline bool operator!=(const AutoDiffScalar<OtherDerType>& b) const { return m_value != b.value(); }
178 
179  inline const AutoDiffScalar<DerType&> operator+(const Scalar& other) const
180  {
181  return AutoDiffScalar<DerType&>(m_value + other, m_derivatives);
182  }
183 
184  friend inline const AutoDiffScalar<DerType&> operator+(const Scalar& a, const AutoDiffScalar& b)
185  {
186  return AutoDiffScalar<DerType&>(a + b.value(), b.derivatives());
187  }
188 
189 // inline const AutoDiffScalar<DerType&> operator+(const Real& other) const
190 // {
191 // return AutoDiffScalar<DerType&>(m_value + other, m_derivatives);
192 // }
193 
194 // friend inline const AutoDiffScalar<DerType&> operator+(const Real& a, const AutoDiffScalar& b)
195 // {
196 // return AutoDiffScalar<DerType&>(a + b.value(), b.derivatives());
197 // }
198 
199  inline AutoDiffScalar& operator+=(const Scalar& other)
200  {
201  value() += other;
202  return *this;
203  }
204 
205  template<typename OtherDerType>
207  operator+(const AutoDiffScalar<OtherDerType>& other) const
208  {
209  internal::make_coherent(m_derivatives, other.derivatives());
211  m_value + other.value(),
212  m_derivatives + other.derivatives());
213  }
214 
215  template<typename OtherDerType>
216  inline AutoDiffScalar&
217  operator+=(const AutoDiffScalar<OtherDerType>& other)
218  {
219  (*this) = (*this) + other;
220  return *this;
221  }
222 
223  inline const AutoDiffScalar<DerType&> operator-(const Scalar& b) const
224  {
225  return AutoDiffScalar<DerType&>(m_value - b, m_derivatives);
226  }
227 
228  friend inline const AutoDiffScalar<CwiseUnaryOp<internal::scalar_opposite_op<Scalar>, const DerType> >
229  operator-(const Scalar& a, const AutoDiffScalar& b)
230  {
231  return AutoDiffScalar<CwiseUnaryOp<internal::scalar_opposite_op<Scalar>, const DerType> >
232  (a - b.value(), -b.derivatives());
233  }
234 
235  inline AutoDiffScalar& operator-=(const Scalar& other)
236  {
237  value() -= other;
238  return *this;
239  }
240 
241  template<typename OtherDerType>
243  operator-(const AutoDiffScalar<OtherDerType>& other) const
244  {
245  internal::make_coherent(m_derivatives, other.derivatives());
247  m_value - other.value(),
248  m_derivatives - other.derivatives());
249  }
250 
251  template<typename OtherDerType>
252  inline AutoDiffScalar&
253  operator-=(const AutoDiffScalar<OtherDerType>& other)
254  {
255  *this = *this - other;
256  return *this;
257  }
258 
259  inline const AutoDiffScalar<CwiseUnaryOp<internal::scalar_opposite_op<Scalar>, const DerType> >
260  operator-() const
261  {
262  return AutoDiffScalar<CwiseUnaryOp<internal::scalar_opposite_op<Scalar>, const DerType> >(
263  -m_value,
264  -m_derivatives);
265  }
266 
268  operator*(const Scalar& other) const
269  {
270  return MakeAutoDiffScalar(m_value * other, m_derivatives * other);
271  }
272 
274  operator*(const Scalar& other, const AutoDiffScalar& a)
275  {
276  return MakeAutoDiffScalar(a.value() * other, a.derivatives() * other);
277  }
278 
279 // inline const AutoDiffScalar<typename CwiseUnaryOp<internal::scalar_multiple_op<Real>, DerType>::Type >
280 // operator*(const Real& other) const
281 // {
282 // return AutoDiffScalar<typename CwiseUnaryOp<internal::scalar_multiple_op<Real>, DerType>::Type >(
283 // m_value * other,
284 // (m_derivatives * other));
285 // }
286 //
287 // friend inline const AutoDiffScalar<typename CwiseUnaryOp<internal::scalar_multiple_op<Real>, DerType>::Type >
288 // operator*(const Real& other, const AutoDiffScalar& a)
289 // {
290 // return AutoDiffScalar<typename CwiseUnaryOp<internal::scalar_multiple_op<Real>, DerType>::Type >(
291 // a.value() * other,
292 // a.derivatives() * other);
293 // }
294 
296  operator/(const Scalar& other) const
297  {
298  return MakeAutoDiffScalar(m_value / other, (m_derivatives * (Scalar(1)/other)));
299  }
300 
302  operator/(const Scalar& other, const AutoDiffScalar& a)
303  {
304  return MakeAutoDiffScalar(other / a.value(), a.derivatives() * (Scalar(-other) / (a.value()*a.value())));
305  }
306 
307 // inline const AutoDiffScalar<typename CwiseUnaryOp<internal::scalar_multiple_op<Real>, DerType>::Type >
308 // operator/(const Real& other) const
309 // {
310 // return AutoDiffScalar<typename CwiseUnaryOp<internal::scalar_multiple_op<Real>, DerType>::Type >(
311 // m_value / other,
312 // (m_derivatives * (Real(1)/other)));
313 // }
314 //
315 // friend inline const AutoDiffScalar<typename CwiseUnaryOp<internal::scalar_multiple_op<Real>, DerType>::Type >
316 // operator/(const Real& other, const AutoDiffScalar& a)
317 // {
318 // return AutoDiffScalar<typename CwiseUnaryOp<internal::scalar_multiple_op<Real>, DerType>::Type >(
319 // other / a.value(),
320 // a.derivatives() * (-Real(1)/other));
321 // }
322 
323  template<typename OtherDerType>
324  inline const AutoDiffScalar<EIGEN_EXPR_BINARYOP_SCALAR_RETURN_TYPE(
326  const EIGEN_EXPR_BINARYOP_SCALAR_RETURN_TYPE(DerType,Scalar,product) EIGEN_COMMA
327  const EIGEN_EXPR_BINARYOP_SCALAR_RETURN_TYPE(typename internal::remove_all<OtherDerType>::type,Scalar,product) >,Scalar,product) >
328  operator/(const AutoDiffScalar<OtherDerType>& other) const
329  {
330  internal::make_coherent(m_derivatives, other.derivatives());
331  return MakeAutoDiffScalar(
332  m_value / other.value(),
333  ((m_derivatives * other.value()) - (other.derivatives() * m_value))
334  * (Scalar(1)/(other.value()*other.value())));
335  }
336 
337  template<typename OtherDerType>
339  const EIGEN_EXPR_BINARYOP_SCALAR_RETURN_TYPE(DerType,Scalar,product),
340  const EIGEN_EXPR_BINARYOP_SCALAR_RETURN_TYPE(typename internal::remove_all<OtherDerType>::type,Scalar,product) > >
341  operator*(const AutoDiffScalar<OtherDerType>& other) const
342  {
343  internal::make_coherent(m_derivatives, other.derivatives());
344  return MakeAutoDiffScalar(
345  m_value * other.value(),
346  (m_derivatives * other.value()) + (other.derivatives() * m_value));
347  }
348 
349  inline AutoDiffScalar& operator*=(const Scalar& other)
350  {
351  *this = *this * other;
352  return *this;
353  }
354 
355  template<typename OtherDerType>
356  inline AutoDiffScalar& operator*=(const AutoDiffScalar<OtherDerType>& other)
357  {
358  *this = *this * other;
359  return *this;
360  }
361 
362  inline AutoDiffScalar& operator/=(const Scalar& other)
363  {
364  *this = *this / other;
365  return *this;
366  }
367 
368  template<typename OtherDerType>
369  inline AutoDiffScalar& operator/=(const AutoDiffScalar<OtherDerType>& other)
370  {
371  *this = *this / other;
372  return *this;
373  }
374 
375  protected:
376  Scalar m_value;
377  DerType m_derivatives;
378 
379 };
380 
381 namespace internal {
382 
383 template<typename _DerType>
384 struct auto_diff_special_op<_DerType, true>
385 // : auto_diff_scalar_op<_DerType, typename NumTraits<Scalar>::Real,
386 // is_same<Scalar,typename NumTraits<Scalar>::Real>::value>
387 {
388  typedef typename remove_all<_DerType>::type DerType;
389  typedef typename traits<DerType>::Scalar Scalar;
390  typedef typename NumTraits<Scalar>::Real Real;
391 
392 // typedef auto_diff_scalar_op<_DerType, typename NumTraits<Scalar>::Real,
393 // is_same<Scalar,typename NumTraits<Scalar>::Real>::value> Base;
394 
395 // using Base::operator+;
396 // using Base::operator+=;
397 // using Base::operator-;
398 // using Base::operator-=;
399 // using Base::operator*;
400 // using Base::operator*=;
401 
402  const AutoDiffScalar<_DerType>& derived() const { return *static_cast<const AutoDiffScalar<_DerType>*>(this); }
403  AutoDiffScalar<_DerType>& derived() { return *static_cast<AutoDiffScalar<_DerType>*>(this); }
404 
405 
406  inline const AutoDiffScalar<DerType&> operator+(const Real& other) const
407  {
408  return AutoDiffScalar<DerType&>(derived().value() + other, derived().derivatives());
409  }
410 
411  friend inline const AutoDiffScalar<DerType&> operator+(const Real& a, const AutoDiffScalar<_DerType>& b)
412  {
413  return AutoDiffScalar<DerType&>(a + b.value(), b.derivatives());
414  }
415 
416  inline AutoDiffScalar<_DerType>& operator+=(const Real& other)
417  {
418  derived().value() += other;
419  return derived();
420  }
421 
422 
424  operator*(const Real& other) const
425  {
427  derived().value() * other,
428  derived().derivatives() * other);
429  }
430 
432  operator*(const Real& other, const AutoDiffScalar<_DerType>& a)
433  {
434  return AutoDiffScalar<typename CwiseUnaryOp<bind1st_op<scalar_product_op<Real,Scalar> >, DerType>::Type >(
435  a.value() * other,
436  a.derivatives() * other);
437  }
438 
439  inline AutoDiffScalar<_DerType>& operator*=(const Scalar& other)
440  {
441  *this = *this * other;
442  return derived();
443  }
444 };
445 
446 template<typename _DerType>
447 struct auto_diff_special_op<_DerType, false>
448 {
449  void operator*() const;
450  void operator-() const;
451  void operator+() const;
452 };
453 
454 template<typename A_Scalar, int A_Rows, int A_Cols, int A_Options, int A_MaxRows, int A_MaxCols, typename B>
455 struct make_coherent_impl<Matrix<A_Scalar, A_Rows, A_Cols, A_Options, A_MaxRows, A_MaxCols>, B> {
457  static void run(A& a, B& b) {
458  if((A_Rows==Dynamic || A_Cols==Dynamic) && (a.size()==0))
459  {
460  a.resize(b.size());
461  a.setZero();
462  }
463  }
464 };
465 
466 template<typename A, typename B_Scalar, int B_Rows, int B_Cols, int B_Options, int B_MaxRows, int B_MaxCols>
467 struct make_coherent_impl<A, Matrix<B_Scalar, B_Rows, B_Cols, B_Options, B_MaxRows, B_MaxCols> > {
469  static void run(A& a, B& b) {
470  if((B_Rows==Dynamic || B_Cols==Dynamic) && (b.size()==0))
471  {
472  b.resize(a.size());
473  b.setZero();
474  }
475  }
476 };
477 
478 template<typename A_Scalar, int A_Rows, int A_Cols, int A_Options, int A_MaxRows, int A_MaxCols,
479  typename B_Scalar, int B_Rows, int B_Cols, int B_Options, int B_MaxRows, int B_MaxCols>
480 struct make_coherent_impl<Matrix<A_Scalar, A_Rows, A_Cols, A_Options, A_MaxRows, A_MaxCols>,
481  Matrix<B_Scalar, B_Rows, B_Cols, B_Options, B_MaxRows, B_MaxCols> > {
484  static void run(A& a, B& b) {
485  if((A_Rows==Dynamic || A_Cols==Dynamic) && (a.size()==0))
486  {
487  a.resize(b.size());
488  a.setZero();
489  }
490  else if((B_Rows==Dynamic || B_Cols==Dynamic) && (b.size()==0))
491  {
492  b.resize(a.size());
493  b.setZero();
494  }
495  }
496 };
497 
498 } // end namespace internal
499 
500 template<typename DerType, typename BinOp>
501 struct ScalarBinaryOpTraits<AutoDiffScalar<DerType>,typename DerType::Scalar,BinOp>
502 {
504 };
505 
506 template<typename DerType, typename BinOp>
507 struct ScalarBinaryOpTraits<typename DerType::Scalar,AutoDiffScalar<DerType>, BinOp>
508 {
510 };
511 
512 
513 // The following is an attempt to let Eigen's known about expression template, but that's more tricky!
514 
515 // template<typename DerType, typename BinOp>
516 // struct ScalarBinaryOpTraits<AutoDiffScalar<DerType>,AutoDiffScalar<DerType>, BinOp>
517 // {
518 // enum { Defined = 1 };
519 // typedef AutoDiffScalar<typename DerType::PlainObject> ReturnType;
520 // };
521 //
522 // template<typename DerType1,typename DerType2, typename BinOp>
523 // struct ScalarBinaryOpTraits<AutoDiffScalar<DerType1>,AutoDiffScalar<DerType2>, BinOp>
524 // {
525 // enum { Defined = 1 };//internal::is_same<typename DerType1::Scalar,typename DerType2::Scalar>::value };
526 // typedef AutoDiffScalar<typename DerType1::PlainObject> ReturnType;
527 // };
528 
529 #define EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY(FUNC,CODE) \
530  template<typename DerType> \
531  inline const Eigen::AutoDiffScalar< \
532  EIGEN_EXPR_BINARYOP_SCALAR_RETURN_TYPE(typename Eigen::internal::remove_all<DerType>::type, typename Eigen::internal::traits<typename Eigen::internal::remove_all<DerType>::type>::Scalar, product) > \
533  FUNC(const Eigen::AutoDiffScalar<DerType>& x) { \
534  using namespace Eigen; \
535  EIGEN_UNUSED typedef typename Eigen::internal::traits<typename Eigen::internal::remove_all<DerType>::type>::Scalar Scalar; \
536  CODE; \
537  }
538 
539 template<typename DerType>
540 inline const AutoDiffScalar<DerType>& conj(const AutoDiffScalar<DerType>& x) { return x; }
541 template<typename DerType>
542 inline const AutoDiffScalar<DerType>& real(const AutoDiffScalar<DerType>& x) { return x; }
543 template<typename DerType>
544 inline typename DerType::Scalar imag(const AutoDiffScalar<DerType>&) { return 0.; }
545 template<typename DerType, typename T>
548  return (x <= y ? ADS(x) : ADS(y));
549 }
550 template<typename DerType, typename T>
553  return (x >= y ? ADS(x) : ADS(y));
554 }
555 template<typename DerType, typename T>
558  return (x < y ? ADS(x) : ADS(y));
559 }
560 template<typename DerType, typename T>
563  return (x > y ? ADS(x) : ADS(y));
564 }
565 template<typename DerType>
567  return (x.value() < y.value() ? x : y);
568 }
569 template<typename DerType>
571  return (x.value() >= y.value() ? x : y);
572 }
573 
574 
575 EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY(abs,
576  using std::abs;
577  return Eigen::MakeAutoDiffScalar(abs(x.value()), x.derivatives() * (x.value()<0 ? -1 : 1) );)
578 
579 EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY(abs2,
580  using numext::abs2;
581  return Eigen::MakeAutoDiffScalar(abs2(x.value()), x.derivatives() * (Scalar(2)*x.value()));)
582 
583 EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY(sqrt,
584  using std::sqrt;
585  Scalar sqrtx = sqrt(x.value());
586  return Eigen::MakeAutoDiffScalar(sqrtx,x.derivatives() * (Scalar(0.5) / sqrtx));)
587 
588 EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY(cos,
589  using std::cos;
590  using std::sin;
591  return Eigen::MakeAutoDiffScalar(cos(x.value()), x.derivatives() * (-sin(x.value())));)
592 
593 EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY(sin,
594  using std::sin;
595  using std::cos;
596  return Eigen::MakeAutoDiffScalar(sin(x.value()),x.derivatives() * cos(x.value()));)
597 
598 EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY(exp,
599  using std::exp;
600  Scalar expx = exp(x.value());
601  return Eigen::MakeAutoDiffScalar(expx,x.derivatives() * expx);)
602 
603 EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY(log,
604  using std::log;
605  return Eigen::MakeAutoDiffScalar(log(x.value()),x.derivatives() * (Scalar(1)/x.value()));)
606 
607 template<typename DerType>
608 inline const Eigen::AutoDiffScalar<
609 EIGEN_EXPR_BINARYOP_SCALAR_RETURN_TYPE(typename internal::remove_all<DerType>::type,typename internal::traits<typename internal::remove_all<DerType>::type>::Scalar,product) >
610 pow(const Eigen::AutoDiffScalar<DerType> &x, const typename internal::traits<typename internal::remove_all<DerType>::type>::Scalar &y)
611 {
612  using namespace Eigen;
613  using std::pow;
614  return Eigen::MakeAutoDiffScalar(pow(x.value(),y), x.derivatives() * (y * pow(x.value(),y-1)));
615 }
616 
617 
618 template<typename DerTypeA,typename DerTypeB>
620 atan2(const AutoDiffScalar<DerTypeA>& a, const AutoDiffScalar<DerTypeB>& b)
621 {
622  using std::atan2;
624  typedef AutoDiffScalar<Matrix<Scalar,Dynamic,1> > PlainADS;
625  PlainADS ret;
626  ret.value() = atan2(a.value(), b.value());
627 
628  Scalar squared_hypot = a.value() * a.value() + b.value() * b.value();
629 
630  // if (squared_hypot==0) the derivation is undefined and the following results in a NaN:
631  ret.derivatives() = (a.derivatives() * b.value() - a.value() * b.derivatives()) / squared_hypot;
632 
633  return ret;
634 }
635 
636 EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY(tan,
637  using std::tan;
638  using std::cos;
639  return Eigen::MakeAutoDiffScalar(tan(x.value()),x.derivatives() * (Scalar(1)/numext::abs2(cos(x.value()))));)
640 
641 EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY(asin,
642  using std::sqrt;
643  using std::asin;
644  return Eigen::MakeAutoDiffScalar(asin(x.value()),x.derivatives() * (Scalar(1)/sqrt(1-numext::abs2(x.value()))));)
645 
646 EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY(acos,
647  using std::sqrt;
648  using std::acos;
649  return Eigen::MakeAutoDiffScalar(acos(x.value()),x.derivatives() * (Scalar(-1)/sqrt(1-numext::abs2(x.value()))));)
650 
651 EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY(tanh,
652  using std::cosh;
653  using std::tanh;
654  return Eigen::MakeAutoDiffScalar(tanh(x.value()),x.derivatives() * (Scalar(1)/numext::abs2(cosh(x.value()))));)
655 
656 EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY(sinh,
657  using std::sinh;
658  using std::cosh;
659  return Eigen::MakeAutoDiffScalar(sinh(x.value()),x.derivatives() * cosh(x.value()));)
660 
661 EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY(cosh,
662  using std::sinh;
663  using std::cosh;
664  return Eigen::MakeAutoDiffScalar(cosh(x.value()),x.derivatives() * sinh(x.value()));)
665 
666 #undef EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY
667 
668 template<typename DerType> struct NumTraits<AutoDiffScalar<DerType> >
670 {
672  typedef AutoDiffScalar<Matrix<typename NumTraits<typename DerTypeCleaned::Scalar>::Real,DerTypeCleaned::RowsAtCompileTime,DerTypeCleaned::ColsAtCompileTime,
673  0, DerTypeCleaned::MaxRowsAtCompileTime, DerTypeCleaned::MaxColsAtCompileTime> > Real;
677  enum{
678  RequireInitialization = 1
679  };
680 };
681 
682 }
683 
684 #endif // EIGEN_AUTODIFF_SCALAR_H
AutoDiffScalar(const Scalar &value, int nbDer, int derNumber)
Constructs an active scalar from its value, and initializes the nbDer derivatives such that it corres...
Definition: AutoDiffScalar.h:88
A scalar type replacement with automatic differentation capability.
Definition: AutoDiffScalar.h:33
Definition: Meta.h:63
AutoDiffScalar()
Default constructor without any initialization.
Definition: AutoDiffScalar.h:84
Namespace containing all symbols from the Eigen library.
Definition: bench_norm.cpp:85
Holds information about the various numeric (i.e.
Definition: NumTraits.h:150
Definition: AutoDiffScalar.h:18
Generic expression where a coefficient-wise binary operator is applied to two expressions.
Definition: CwiseBinaryOp.h:77
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void resize(Index rows, Index cols)
Resizes *this to a rows x cols matrix.
Definition: PlainObjectBase.h:273
Definition: AutoDiffScalar.h:29
AutoDiffScalar(const Real &value)
Conversion from a scalar constant to an active scalar.
Definition: AutoDiffScalar.h:96
Definition: Meta.h:162
EIGEN_DEVICE_FUNC Derived & setZero(Index size)
Resizes to the given size, and sets all coefficients in this expression to zero.
Definition: CwiseNullaryOp.h:515
Definition: BandTriangularSolver.h:13
Definition: BinaryFunctors.h:329
Definition: Meta.h:78
Determines whether the given binary operation of two numeric types is allowed and what the scalar ret...
Definition: XprHelper.h:757
const int Dynamic
This value means that a positive quantity (e.g., a size) is not known at compile-time, and that instead the value is stored in some runtime variable.
Definition: Constants.h:21
AutoDiffScalar(const Scalar &value, const DerType &der)
Constructs an active scalar from its value and derivatives der.
Definition: AutoDiffScalar.h:104
The matrix class, also used for vectors and row-vectors.
Definition: Matrix.h:178
Definition: ForwardDeclarations.h:17