compbio
ComplexEigenSolver.h
1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2009 Claire Maurice
5 // Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr>
6 // Copyright (C) 2010,2012 Jitse Niesen <jitse@maths.leeds.ac.uk>
7 //
8 // This Source Code Form is subject to the terms of the Mozilla
9 // Public License v. 2.0. If a copy of the MPL was not distributed
10 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
11 
12 #ifndef EIGEN_COMPLEX_EIGEN_SOLVER_H
13 #define EIGEN_COMPLEX_EIGEN_SOLVER_H
14 
15 #include "./ComplexSchur.h"
16 
17 namespace Eigen {
18 
45 template<typename _MatrixType> class ComplexEigenSolver
46 {
47  public:
48 
50  typedef _MatrixType MatrixType;
51 
52  enum {
53  RowsAtCompileTime = MatrixType::RowsAtCompileTime,
54  ColsAtCompileTime = MatrixType::ColsAtCompileTime,
55  Options = MatrixType::Options,
56  MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
57  MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
58  };
59 
61  typedef typename MatrixType::Scalar Scalar;
62  typedef typename NumTraits<Scalar>::Real RealScalar;
63  typedef Eigen::Index Index;
64 
71  typedef std::complex<RealScalar> ComplexScalar;
72 
79 
86 
93  : m_eivec(),
94  m_eivalues(),
95  m_schur(),
96  m_isInitialized(false),
97  m_eigenvectorsOk(false),
98  m_matX()
99  {}
100 
107  explicit ComplexEigenSolver(Index size)
108  : m_eivec(size, size),
109  m_eivalues(size),
110  m_schur(size),
111  m_isInitialized(false),
112  m_eigenvectorsOk(false),
113  m_matX(size, size)
114  {}
115 
125  template<typename InputType>
126  explicit ComplexEigenSolver(const EigenBase<InputType>& matrix, bool computeEigenvectors = true)
127  : m_eivec(matrix.rows(),matrix.cols()),
128  m_eivalues(matrix.cols()),
129  m_schur(matrix.rows()),
130  m_isInitialized(false),
131  m_eigenvectorsOk(false),
132  m_matX(matrix.rows(),matrix.cols())
133  {
134  compute(matrix.derived(), computeEigenvectors);
135  }
136 
157  const EigenvectorType& eigenvectors() const
158  {
159  eigen_assert(m_isInitialized && "ComplexEigenSolver is not initialized.");
160  eigen_assert(m_eigenvectorsOk && "The eigenvectors have not been computed together with the eigenvalues.");
161  return m_eivec;
162  }
163 
182  const EigenvalueType& eigenvalues() const
183  {
184  eigen_assert(m_isInitialized && "ComplexEigenSolver is not initialized.");
185  return m_eivalues;
186  }
187 
212  template<typename InputType>
213  ComplexEigenSolver& compute(const EigenBase<InputType>& matrix, bool computeEigenvectors = true);
214 
220  {
221  eigen_assert(m_isInitialized && "ComplexEigenSolver is not initialized.");
222  return m_schur.info();
223  }
224 
227  {
228  m_schur.setMaxIterations(maxIters);
229  return *this;
230  }
231 
234  {
235  return m_schur.getMaxIterations();
236  }
237 
238  protected:
239 
240  static void check_template_parameters()
241  {
242  EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar);
243  }
244 
245  EigenvectorType m_eivec;
246  EigenvalueType m_eivalues;
247  ComplexSchur<MatrixType> m_schur;
248  bool m_isInitialized;
249  bool m_eigenvectorsOk;
250  EigenvectorType m_matX;
251 
252  private:
253  void doComputeEigenvectors(const RealScalar& matrixnorm);
254  void sortEigenvalues(bool computeEigenvectors);
255 };
256 
257 
258 template<typename MatrixType>
259 template<typename InputType>
261 ComplexEigenSolver<MatrixType>::compute(const EigenBase<InputType>& matrix, bool computeEigenvectors)
262 {
263  check_template_parameters();
264 
265  // this code is inspired from Jampack
266  eigen_assert(matrix.cols() == matrix.rows());
267 
268  // Do a complex Schur decomposition, A = U T U^*
269  // The eigenvalues are on the diagonal of T.
270  m_schur.compute(matrix.derived(), computeEigenvectors);
271 
272  if(m_schur.info() == Success)
273  {
274  m_eivalues = m_schur.matrixT().diagonal();
275  if(computeEigenvectors)
276  doComputeEigenvectors(m_schur.matrixT().norm());
277  sortEigenvalues(computeEigenvectors);
278  }
279 
280  m_isInitialized = true;
281  m_eigenvectorsOk = computeEigenvectors;
282  return *this;
283 }
284 
285 
286 template<typename MatrixType>
287 void ComplexEigenSolver<MatrixType>::doComputeEigenvectors(const RealScalar& matrixnorm)
288 {
289  const Index n = m_eivalues.size();
290 
291  // Compute X such that T = X D X^(-1), where D is the diagonal of T.
292  // The matrix X is unit triangular.
293  m_matX = EigenvectorType::Zero(n, n);
294  for(Index k=n-1 ; k>=0 ; k--)
295  {
296  m_matX.coeffRef(k,k) = ComplexScalar(1.0,0.0);
297  // Compute X(i,k) using the (i,k) entry of the equation X T = D X
298  for(Index i=k-1 ; i>=0 ; i--)
299  {
300  m_matX.coeffRef(i,k) = -m_schur.matrixT().coeff(i,k);
301  if(k-i-1>0)
302  m_matX.coeffRef(i,k) -= (m_schur.matrixT().row(i).segment(i+1,k-i-1) * m_matX.col(k).segment(i+1,k-i-1)).value();
303  ComplexScalar z = m_schur.matrixT().coeff(i,i) - m_schur.matrixT().coeff(k,k);
304  if(z==ComplexScalar(0))
305  {
306  // If the i-th and k-th eigenvalue are equal, then z equals 0.
307  // Use a small value instead, to prevent division by zero.
308  numext::real_ref(z) = NumTraits<RealScalar>::epsilon() * matrixnorm;
309  }
310  m_matX.coeffRef(i,k) = m_matX.coeff(i,k) / z;
311  }
312  }
313 
314  // Compute V as V = U X; now A = U T U^* = U X D X^(-1) U^* = V D V^(-1)
315  m_eivec.noalias() = m_schur.matrixU() * m_matX;
316  // .. and normalize the eigenvectors
317  for(Index k=0 ; k<n ; k++)
318  {
319  m_eivec.col(k).normalize();
320  }
321 }
322 
323 
324 template<typename MatrixType>
325 void ComplexEigenSolver<MatrixType>::sortEigenvalues(bool computeEigenvectors)
326 {
327  const Index n = m_eivalues.size();
328  for (Index i=0; i<n; i++)
329  {
330  Index k;
331  m_eivalues.cwiseAbs().tail(n-i).minCoeff(&k);
332  if (k != 0)
333  {
334  k += i;
335  std::swap(m_eivalues[k],m_eivalues[i]);
336  if(computeEigenvectors)
337  m_eivec.col(i).swap(m_eivec.col(k));
338  }
339  }
340 }
341 
342 } // end namespace Eigen
343 
344 #endif // EIGEN_COMPLEX_EIGEN_SOLVER_H
EIGEN_DEVICE_FUNC Index rows() const
Definition: EigenBase.h:58
ComplexSchur & setMaxIterations(Index maxIters)
Sets the maximum number of iterations allowed.
Definition: ComplexSchur.h:228
ComplexEigenSolver(Index size)
Default Constructor with memory preallocation.
Definition: ComplexEigenSolver.h:107
ComplexEigenSolver & compute(const EigenBase< InputType > &matrix, bool computeEigenvectors=true)
Computes eigendecomposition of given matrix.
Matrix< ComplexScalar, ColsAtCompileTime, 1, Options &(~RowMajor), MaxColsAtCompileTime, 1 > EigenvalueType
Type for vector of eigenvalues as returned by eigenvalues().
Definition: ComplexEigenSolver.h:78
Namespace containing all symbols from the Eigen library.
Definition: bench_norm.cpp:85
Holds information about the various numeric (i.e.
Definition: NumTraits.h:150
MatrixType::Scalar Scalar
Scalar type for matrices of type MatrixType.
Definition: ComplexEigenSolver.h:61
Eigen::Index Index
Definition: ComplexEigenSolver.h:63
ComplexSchur & compute(const EigenBase< InputType > &matrix, bool computeU=true)
Computes Schur decomposition of given matrix.
ComputationInfo info() const
Reports whether previous computation was successful.
Definition: ComplexSchur.h:217
Common base class for all classes T such that MatrixBase has an operator=(T) and a constructor Matrix...
Definition: EigenBase.h:28
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar & coeffRef(Index rowId, Index colId)
This is an overloaded version of DenseCoeffsBase<Derived,WriteAccessors>::coeffRef(Index,Index) const provided to by-pass the creation of an evaluator of the expression, thus saving compilation efforts.
Definition: PlainObjectBase.h:177
const EigenvalueType & eigenvalues() const
Returns the eigenvalues of given matrix.
Definition: ComplexEigenSolver.h:182
Matrix< ComplexScalar, RowsAtCompileTime, ColsAtCompileTime, Options, MaxRowsAtCompileTime, MaxColsAtCompileTime > EigenvectorType
Type for matrix of eigenvectors as returned by eigenvectors().
Definition: ComplexEigenSolver.h:85
ComputationInfo info() const
Reports whether previous computation was successful.
Definition: ComplexEigenSolver.h:219
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar & coeff(Index rowId, Index colId) const
This is an overloaded version of DenseCoeffsBase<Derived,ReadOnlyAccessors>::coeff(Index,Index) const provided to by-pass the creation of an evaluator of the expression, thus saving compilation efforts.
Definition: PlainObjectBase.h:154
EIGEN_DEFAULT_DENSE_INDEX_TYPE Index
The Index type as used for the API.
Definition: Meta.h:33
ComplexEigenSolver(const EigenBase< InputType > &matrix, bool computeEigenvectors=true)
Constructor; computes eigendecomposition of given matrix.
Definition: ComplexEigenSolver.h:126
const EigenvectorType & eigenvectors() const
Returns the eigenvectors of given matrix.
Definition: ComplexEigenSolver.h:157
Index getMaxIterations()
Returns the maximum number of iterations.
Definition: ComplexSchur.h:235
Computation was successful.
Definition: Constants.h:432
_MatrixType MatrixType
Synonym for the template parameter _MatrixType.
Definition: ComplexEigenSolver.h:50
ComplexEigenSolver()
Default constructor.
Definition: ComplexEigenSolver.h:92
Index getMaxIterations()
Returns the maximum number of iterations.
Definition: ComplexEigenSolver.h:233
ComplexEigenSolver & setMaxIterations(Index maxIters)
Sets the maximum number of iterations allowed.
Definition: ComplexEigenSolver.h:226
const ComplexMatrixType & matrixU() const
Returns the unitary matrix in the Schur decomposition.
Definition: ComplexSchur.h:138
EIGEN_DEVICE_FUNC Index cols() const
Definition: EigenBase.h:61
std::complex< RealScalar > ComplexScalar
Complex scalar type for MatrixType.
Definition: ComplexEigenSolver.h:71
Definition: ComplexEigenSolver.h:45
ComputationInfo
Enum for reporting the status of a computation.
Definition: Constants.h:430
EIGEN_DEVICE_FUNC Derived & derived()
Definition: EigenBase.h:44
const ComplexMatrixType & matrixT() const
Returns the triangular matrix in the Schur decomposition.
Definition: ComplexSchur.h:162