10 #ifndef EIGEN_MATHFUNCTIONS_H 11 #define EIGEN_MATHFUNCTIONS_H 15 #define EIGEN_PI 3.141592653589793238462643383279502884197169399375105820974944592307816406L 22 #if EIGEN_OS_WINCE && EIGEN_COMP_MSVC && EIGEN_COMP_MSVC<=1500 23 long abs(
long x) {
return (labs(x)); }
24 double abs(
double x) {
return (fabs(x)); }
25 float abs(
float x) {
return (fabsf(x)); }
26 long double abs(
long double x) {
return (fabsl(x)); }
51 template<
typename T,
typename dummy =
void>
52 struct global_math_functions_filtering_base
57 template<
typename T>
struct always_void {
typedef void type; };
60 struct global_math_functions_filtering_base
62 typename always_void<typename
T::Eigen_BaseClassForSpecializationOfGlobalMathFuncImpl>::type
65 typedef typename T::Eigen_BaseClassForSpecializationOfGlobalMathFuncImpl type;
68 #define EIGEN_MATHFUNC_IMPL(func, scalar) Eigen::internal::func##_impl<typename Eigen::internal::global_math_functions_filtering_base<scalar>::type> 69 #define EIGEN_MATHFUNC_RETVAL(func, scalar) typename Eigen::internal::func##_retval<typename Eigen::internal::global_math_functions_filtering_base<scalar>::type>::type 75 template<typename Scalar, bool IsComplex = NumTraits<Scalar>::IsComplex>
76 struct real_default_impl
78 typedef typename NumTraits<Scalar>::Real RealScalar;
80 static inline RealScalar run(
const Scalar& x)
86 template<
typename Scalar>
87 struct real_default_impl<Scalar,true>
89 typedef typename NumTraits<Scalar>::Real RealScalar;
91 static inline RealScalar run(
const Scalar& x)
98 template<
typename Scalar>
struct real_impl : real_default_impl<Scalar> {};
104 typedef T RealScalar;
106 static inline T run(
const std::complex<T>& x)
113 template<
typename Scalar>
116 typedef typename NumTraits<Scalar>::Real type;
123 template<typename Scalar, bool IsComplex = NumTraits<Scalar>::IsComplex>
124 struct imag_default_impl
126 typedef typename NumTraits<Scalar>::Real RealScalar;
128 static inline RealScalar run(
const Scalar&)
130 return RealScalar(0);
134 template<
typename Scalar>
135 struct imag_default_impl<Scalar,true>
137 typedef typename NumTraits<Scalar>::Real RealScalar;
139 static inline RealScalar run(
const Scalar& x)
146 template<
typename Scalar>
struct imag_impl : imag_default_impl<Scalar> {};
152 typedef T RealScalar;
154 static inline T run(
const std::complex<T>& x)
161 template<
typename Scalar>
164 typedef typename NumTraits<Scalar>::Real type;
171 template<
typename Scalar>
174 typedef typename NumTraits<Scalar>::Real RealScalar;
176 static inline RealScalar& run(Scalar& x)
178 return reinterpret_cast<RealScalar*
>(&x)[0];
181 static inline const RealScalar& run(
const Scalar& x)
183 return reinterpret_cast<const RealScalar*
>(&x)[0];
187 template<
typename Scalar>
188 struct real_ref_retval
190 typedef typename NumTraits<Scalar>::Real & type;
197 template<
typename Scalar,
bool IsComplex>
198 struct imag_ref_default_impl
200 typedef typename NumTraits<Scalar>::Real RealScalar;
202 static inline RealScalar& run(Scalar& x)
204 return reinterpret_cast<RealScalar*
>(&x)[1];
207 static inline const RealScalar& run(
const Scalar& x)
209 return reinterpret_cast<RealScalar*
>(&x)[1];
213 template<
typename Scalar>
214 struct imag_ref_default_impl<Scalar, false>
217 static inline Scalar run(Scalar&)
222 static inline const Scalar run(
const Scalar&)
228 template<
typename Scalar>
229 struct imag_ref_impl : imag_ref_default_impl<Scalar, NumTraits<Scalar>::IsComplex> {};
231 template<
typename Scalar>
232 struct imag_ref_retval
234 typedef typename NumTraits<Scalar>::Real & type;
241 template<typename Scalar, bool IsComplex = NumTraits<Scalar>::IsComplex>
245 static inline Scalar run(
const Scalar& x)
251 template<
typename Scalar>
252 struct conj_impl<Scalar,true>
255 static inline Scalar run(
const Scalar& x)
262 template<
typename Scalar>
272 template<
typename Scalar,
bool IsComplex>
273 struct abs2_impl_default
275 typedef typename NumTraits<Scalar>::Real RealScalar;
277 static inline RealScalar run(
const Scalar& x)
283 template<
typename Scalar>
284 struct abs2_impl_default<Scalar, true>
286 typedef typename NumTraits<Scalar>::Real RealScalar;
288 static inline RealScalar run(
const Scalar& x)
290 return real(x)*real(x) + imag(x)*imag(x);
294 template<
typename Scalar>
297 typedef typename NumTraits<Scalar>::Real RealScalar;
299 static inline RealScalar run(
const Scalar& x)
301 return abs2_impl_default<Scalar,NumTraits<Scalar>::IsComplex>::run(x);
305 template<
typename Scalar>
308 typedef typename NumTraits<Scalar>::Real type;
315 template<
typename Scalar,
bool IsComplex>
316 struct norm1_default_impl
318 typedef typename NumTraits<Scalar>::Real RealScalar;
320 static inline RealScalar run(
const Scalar& x)
322 EIGEN_USING_STD_MATH(abs);
323 return abs(real(x)) + abs(imag(x));
327 template<
typename Scalar>
328 struct norm1_default_impl<Scalar, false>
331 static inline Scalar run(
const Scalar& x)
333 EIGEN_USING_STD_MATH(abs);
338 template<
typename Scalar>
339 struct norm1_impl : norm1_default_impl<Scalar, NumTraits<Scalar>::IsComplex> {};
341 template<
typename Scalar>
344 typedef typename NumTraits<Scalar>::Real type;
351 template<
typename Scalar>
354 typedef typename NumTraits<Scalar>::Real RealScalar;
355 static inline RealScalar run(
const Scalar& x,
const Scalar& y)
357 EIGEN_USING_STD_MATH(abs);
358 EIGEN_USING_STD_MATH(sqrt);
359 RealScalar _x = abs(x);
360 RealScalar _y = abs(y);
372 if(p==RealScalar(0))
return RealScalar(0);
373 return p * sqrt(RealScalar(1) + qp*qp);
377 template<
typename Scalar>
380 typedef typename NumTraits<Scalar>::Real type;
387 template<
typename OldType,
typename NewType>
391 static inline NewType run(
const OldType& x)
393 return static_cast<NewType
>(x);
399 template<
typename OldType,
typename NewType>
401 inline NewType cast(
const OldType& x)
403 return cast_impl<OldType, NewType>::run(x);
410 #if EIGEN_HAS_CXX11_MATH 411 template<
typename Scalar>
413 static inline Scalar run(
const Scalar& x)
415 EIGEN_STATIC_ASSERT((!NumTraits<Scalar>::IsComplex), NUMERIC_TYPE_MUST_BE_REAL)
421 template<
typename Scalar>
424 static inline Scalar run(
const Scalar& x)
426 EIGEN_STATIC_ASSERT((!NumTraits<Scalar>::IsComplex), NUMERIC_TYPE_MUST_BE_REAL)
427 EIGEN_USING_STD_MATH(floor);
428 EIGEN_USING_STD_MATH(ceil);
429 return (x > Scalar(0)) ? floor(x + Scalar(0.5)) : ceil(x - Scalar(0.5));
434 template<
typename Scalar>
444 #if EIGEN_HAS_CXX11_MATH 445 template<
typename Scalar>
447 static inline Scalar run(
const Scalar& x)
449 EIGEN_USING_STD_MATH(arg);
454 template<typename Scalar, bool IsComplex = NumTraits<Scalar>::IsComplex>
455 struct arg_default_impl
457 typedef typename NumTraits<Scalar>::Real RealScalar;
459 static inline RealScalar run(
const Scalar& x)
461 return (x < Scalar(0)) ? Scalar(EIGEN_PI) : Scalar(0); }
464 template<
typename Scalar>
465 struct arg_default_impl<Scalar,true>
467 typedef typename NumTraits<Scalar>::Real RealScalar;
469 static inline RealScalar run(
const Scalar& x)
471 EIGEN_USING_STD_MATH(arg);
476 template<
typename Scalar>
struct arg_impl : arg_default_impl<Scalar> {};
479 template<
typename Scalar>
482 typedef typename NumTraits<Scalar>::Real type;
489 namespace std_fallback {
492 template<
typename Scalar>
493 EIGEN_DEVICE_FUNC
inline Scalar log1p(
const Scalar& x) {
494 EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar)
495 typedef typename NumTraits<Scalar>::Real RealScalar;
496 EIGEN_USING_STD_MATH(log);
497 Scalar x1p = RealScalar(1) + x;
498 return ( x1p == Scalar(1) ) ? x : x * ( log(x1p) / (x1p - RealScalar(1)) );
502 template<typename Scalar>
504 static inline Scalar run(
const Scalar& x)
506 EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar)
507 #if EIGEN_HAS_CXX11_MATH 510 using std_fallback::log1p;
516 template<
typename Scalar>
526 template<typename ScalarX,typename ScalarY, bool IsInteger = NumTraits<ScalarX>::IsInteger&&NumTraits<ScalarY>::IsInteger>
530 typedef typename ScalarBinaryOpTraits<ScalarX,ScalarY,internal::scalar_pow_op<ScalarX,ScalarY> >::ReturnType result_type;
531 static EIGEN_DEVICE_FUNC
inline result_type run(
const ScalarX& x,
const ScalarY& y)
533 EIGEN_USING_STD_MATH(pow);
538 template<
typename ScalarX,
typename ScalarY>
539 struct pow_impl<ScalarX,ScalarY, true>
541 typedef ScalarX result_type;
542 static EIGEN_DEVICE_FUNC
inline ScalarX run(ScalarX x, ScalarY y)
545 eigen_assert(!NumTraits<ScalarY>::IsSigned || y >= 0);
562 template<
typename Scalar,
565 struct random_default_impl {};
567 template<
typename Scalar>
568 struct random_impl : random_default_impl<Scalar, NumTraits<Scalar>::IsComplex, NumTraits<Scalar>::IsInteger> {};
570 template<
typename Scalar>
576 template<
typename Scalar>
inline EIGEN_MATHFUNC_RETVAL(random, Scalar) random(const Scalar& x, const Scalar& y);
577 template<typename Scalar> inline EIGEN_MATHFUNC_RETVAL(random, Scalar) random();
579 template<typename Scalar>
580 struct random_default_impl<Scalar, false, false>
582 static inline Scalar run(
const Scalar& x,
const Scalar& y)
584 return x + (y-x) * Scalar(std::rand()) / Scalar(RAND_MAX);
586 static inline Scalar run()
588 return run(Scalar(NumTraits<Scalar>::IsSigned ? -1 : 0), Scalar(1));
593 meta_floor_log2_terminate,
594 meta_floor_log2_move_up,
595 meta_floor_log2_move_down,
596 meta_floor_log2_bogus
599 template<
unsigned int n,
int lower,
int upper>
struct meta_floor_log2_selector
601 enum { middle = (lower + upper) / 2,
602 value = (upper <= lower + 1) ? int(meta_floor_log2_terminate)
603 : (n < (1 << middle)) ? int(meta_floor_log2_move_down)
604 : (n==0) ? int(meta_floor_log2_bogus)
605 : int(meta_floor_log2_move_up)
609 template<
unsigned int n,
611 int upper =
sizeof(
unsigned int) * CHAR_BIT - 1,
612 int selector = meta_floor_log2_selector<n, lower, upper>::value>
613 struct meta_floor_log2 {};
615 template<
unsigned int n,
int lower,
int upper>
616 struct meta_floor_log2<n, lower, upper, meta_floor_log2_move_down>
618 enum { value = meta_floor_log2<n, lower, meta_floor_log2_selector<n, lower, upper>::middle>::value };
621 template<
unsigned int n,
int lower,
int upper>
622 struct meta_floor_log2<n, lower, upper, meta_floor_log2_move_up>
624 enum { value = meta_floor_log2<n, meta_floor_log2_selector<n, lower, upper>::middle, upper>::value };
627 template<
unsigned int n,
int lower,
int upper>
628 struct meta_floor_log2<n, lower, upper, meta_floor_log2_terminate>
630 enum { value = (n >= ((
unsigned int)(1) << (lower+1))) ? lower+1 : lower };
633 template<
unsigned int n,
int lower,
int upper>
634 struct meta_floor_log2<n, lower, upper, meta_floor_log2_bogus>
639 template<
typename Scalar>
640 struct random_default_impl<Scalar, false, true>
642 static inline Scalar run(
const Scalar& x,
const Scalar& y)
644 typedef typename conditional<NumTraits<Scalar>::IsSigned,std::ptrdiff_t,std::size_t>::type ScalarX;
649 std::size_t range = ScalarX(y)-ScalarX(x);
650 std::size_t offset = 0;
652 std::size_t divisor = 1;
653 std::size_t multiplier = 1;
654 if(range<RAND_MAX) divisor = (std::size_t(RAND_MAX)+1)/(range+1);
655 else multiplier = 1 + range/(std::size_t(RAND_MAX)+1);
657 offset = (std::size_t(std::rand()) * multiplier) / divisor;
658 }
while (offset > range);
659 return Scalar(ScalarX(x) + offset);
662 static inline Scalar run()
664 #ifdef EIGEN_MAKING_DOCS 665 return run(Scalar(NumTraits<Scalar>::IsSigned ? -10 : 0), Scalar(10));
667 enum { rand_bits = meta_floor_log2<(unsigned int)(RAND_MAX)+1>::value,
668 scalar_bits =
sizeof(Scalar) * CHAR_BIT,
669 shift = EIGEN_PLAIN_ENUM_MAX(0,
int(rand_bits) - int(scalar_bits)),
670 offset = NumTraits<Scalar>::IsSigned ? (1 << (EIGEN_PLAIN_ENUM_MIN(rand_bits,scalar_bits)-1)) : 0
672 return Scalar((std::rand() >> shift) - offset);
677 template<
typename Scalar>
678 struct random_default_impl<Scalar, true, false>
680 static inline Scalar run(
const Scalar& x,
const Scalar& y)
682 return Scalar(random(real(x), real(y)),
683 random(imag(x), imag(y)));
685 static inline Scalar run()
687 typedef typename NumTraits<Scalar>::Real RealScalar;
688 return Scalar(random<RealScalar>(), random<RealScalar>());
692 template<
typename Scalar>
693 inline EIGEN_MATHFUNC_RETVAL(random, Scalar) random(const Scalar& x, const Scalar& y)
695 return EIGEN_MATHFUNC_IMPL(random, Scalar)::run(x, y);
698 template<
typename Scalar>
699 inline EIGEN_MATHFUNC_RETVAL(random, Scalar) random()
701 return EIGEN_MATHFUNC_IMPL(random, Scalar)::run();
707 #if (EIGEN_HAS_CXX11_MATH && !(EIGEN_COMP_GNUC_STRICT && __FINITE_MATH_ONLY__)) || (EIGEN_COMP_MSVC>=1800) || (EIGEN_COMP_CLANG) 708 #define EIGEN_USE_STD_FPCLASSIFY 1 710 #define EIGEN_USE_STD_FPCLASSIFY 0 715 typename internal::enable_if<internal::is_integral<T>::value,
bool>::type
716 isnan_impl(
const T&) {
return false; }
720 typename internal::enable_if<internal::is_integral<T>::value,
bool>::type
721 isinf_impl(
const T&) {
return false; }
725 typename internal::enable_if<internal::is_integral<T>::value,
bool>::type
726 isfinite_impl(
const T&) {
return true; }
730 typename internal::enable_if<(!internal::is_integral<T>::value)&&(!NumTraits<T>::IsComplex),
bool>::type
731 isfinite_impl(
const T& x)
734 return (::isfinite)(x);
735 #elif EIGEN_USE_STD_FPCLASSIFY 737 return isfinite EIGEN_NOT_A_MACRO (x);
739 return x<=NumTraits<T>::highest() && x>=NumTraits<T>::lowest();
745 typename internal::enable_if<(!internal::is_integral<T>::value)&&(!NumTraits<T>::IsComplex),
bool>::type
746 isinf_impl(
const T& x)
750 #elif EIGEN_USE_STD_FPCLASSIFY 752 return isinf EIGEN_NOT_A_MACRO (x);
754 return x>NumTraits<T>::highest() || x<NumTraits<T>::lowest();
760 typename internal::enable_if<(!internal::is_integral<T>::value)&&(!NumTraits<T>::IsComplex),
bool>::type
761 isnan_impl(
const T& x)
765 #elif EIGEN_USE_STD_FPCLASSIFY 767 return isnan EIGEN_NOT_A_MACRO (x);
773 #if (!EIGEN_USE_STD_FPCLASSIFY) 777 template<
typename T> EIGEN_DEVICE_FUNC
bool isinf_msvc_helper(
T x)
779 return _fpclass(x)==_FPCLASS_NINF || _fpclass(x)==_FPCLASS_PINF;
783 EIGEN_DEVICE_FUNC
inline bool isnan_impl(
const long double& x) {
return _isnan(x)!=0; }
784 EIGEN_DEVICE_FUNC
inline bool isnan_impl(
const double& x) {
return _isnan(x)!=0; }
785 EIGEN_DEVICE_FUNC
inline bool isnan_impl(
const float& x) {
return _isnan(x)!=0; }
787 EIGEN_DEVICE_FUNC
inline bool isinf_impl(
const long double& x) {
return isinf_msvc_helper(x); }
788 EIGEN_DEVICE_FUNC
inline bool isinf_impl(
const double& x) {
return isinf_msvc_helper(x); }
789 EIGEN_DEVICE_FUNC
inline bool isinf_impl(
const float& x) {
return isinf_msvc_helper(x); }
791 #elif (defined __FINITE_MATH_ONLY__ && __FINITE_MATH_ONLY__ && EIGEN_COMP_GNUC) 793 #if EIGEN_GNUC_AT_LEAST(5,0) 794 #define EIGEN_TMP_NOOPT_ATTRIB EIGEN_DEVICE_FUNC inline __attribute__((optimize("no-finite-math-only"))) 798 #define EIGEN_TMP_NOOPT_ATTRIB EIGEN_DEVICE_FUNC inline __attribute__((noinline,optimize("no-finite-math-only"))) 801 template<> EIGEN_TMP_NOOPT_ATTRIB
bool isnan_impl(
const long double& x) {
return __builtin_isnan(x); }
802 template<> EIGEN_TMP_NOOPT_ATTRIB
bool isnan_impl(
const double& x) {
return __builtin_isnan(x); }
803 template<> EIGEN_TMP_NOOPT_ATTRIB
bool isnan_impl(
const float& x) {
return __builtin_isnan(x); }
804 template<> EIGEN_TMP_NOOPT_ATTRIB
bool isinf_impl(
const double& x) {
return __builtin_isinf(x); }
805 template<> EIGEN_TMP_NOOPT_ATTRIB
bool isinf_impl(
const float& x) {
return __builtin_isinf(x); }
806 template<> EIGEN_TMP_NOOPT_ATTRIB
bool isinf_impl(
const long double& x) {
return __builtin_isinf(x); }
808 #undef EIGEN_TMP_NOOPT_ATTRIB 815 template<
typename T> EIGEN_DEVICE_FUNC
bool isfinite_impl(
const std::complex<T>& x);
816 template<
typename T> EIGEN_DEVICE_FUNC
bool isnan_impl(
const std::complex<T>& x);
817 template<
typename T> EIGEN_DEVICE_FUNC
bool isinf_impl(
const std::complex<T>& x);
819 template<
typename T>
T generic_fast_tanh_float(
const T& a_x);
829 #ifndef __CUDA_ARCH__ 832 EIGEN_ALWAYS_INLINE
T mini(
const T& x,
const T& y)
834 EIGEN_USING_STD_MATH(min);
835 return min EIGEN_NOT_A_MACRO (x,y);
840 EIGEN_ALWAYS_INLINE
T maxi(
const T& x,
const T& y)
842 EIGEN_USING_STD_MATH(max);
843 return max EIGEN_NOT_A_MACRO (x,y);
848 EIGEN_ALWAYS_INLINE
T mini(
const T& x,
const T& y)
850 return y < x ? y : x;
854 EIGEN_ALWAYS_INLINE
float mini(
const float& x,
const float& y)
860 EIGEN_ALWAYS_INLINE
T maxi(
const T& x,
const T& y)
862 return x < y ? y : x;
866 EIGEN_ALWAYS_INLINE
float maxi(
const float& x,
const float& y)
873 template<
typename Scalar>
875 inline EIGEN_MATHFUNC_RETVAL(real, Scalar) real(const Scalar& x)
877 return EIGEN_MATHFUNC_IMPL(real, Scalar)::run(x);
880 template<
typename Scalar>
882 inline typename internal::add_const_on_value_type< EIGEN_MATHFUNC_RETVAL(real_ref, Scalar) >::type real_ref(
const Scalar& x)
884 return internal::real_ref_impl<Scalar>::run(x);
887 template<
typename Scalar>
889 inline EIGEN_MATHFUNC_RETVAL(real_ref, Scalar) real_ref(Scalar& x)
891 return EIGEN_MATHFUNC_IMPL(real_ref, Scalar)::run(x);
894 template<
typename Scalar>
896 inline EIGEN_MATHFUNC_RETVAL(imag, Scalar) imag(const Scalar& x)
898 return EIGEN_MATHFUNC_IMPL(imag, Scalar)::run(x);
901 template<
typename Scalar>
903 inline EIGEN_MATHFUNC_RETVAL(arg, Scalar) arg(const Scalar& x)
905 return EIGEN_MATHFUNC_IMPL(arg, Scalar)::run(x);
908 template<
typename Scalar>
910 inline typename internal::add_const_on_value_type< EIGEN_MATHFUNC_RETVAL(imag_ref, Scalar) >::type imag_ref(
const Scalar& x)
912 return internal::imag_ref_impl<Scalar>::run(x);
915 template<
typename Scalar>
917 inline EIGEN_MATHFUNC_RETVAL(imag_ref, Scalar) imag_ref(Scalar& x)
919 return EIGEN_MATHFUNC_IMPL(imag_ref, Scalar)::run(x);
922 template<
typename Scalar>
924 inline EIGEN_MATHFUNC_RETVAL(conj, Scalar) conj(const Scalar& x)
926 return EIGEN_MATHFUNC_IMPL(conj, Scalar)::run(x);
929 template<
typename Scalar>
931 inline EIGEN_MATHFUNC_RETVAL(abs2, Scalar) abs2(const Scalar& x)
933 return EIGEN_MATHFUNC_IMPL(abs2, Scalar)::run(x);
936 template<
typename Scalar>
938 inline EIGEN_MATHFUNC_RETVAL(norm1, Scalar) norm1(const Scalar& x)
940 return EIGEN_MATHFUNC_IMPL(norm1, Scalar)::run(x);
943 template<
typename Scalar>
945 inline EIGEN_MATHFUNC_RETVAL(hypot, Scalar) hypot(const Scalar& x, const Scalar& y)
947 return EIGEN_MATHFUNC_IMPL(hypot, Scalar)::run(x, y);
950 template<
typename Scalar>
952 inline EIGEN_MATHFUNC_RETVAL(log1p, Scalar) log1p(const Scalar& x)
954 return EIGEN_MATHFUNC_IMPL(log1p, Scalar)::run(x);
958 template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
959 float log1p(
const float &x) { return ::log1pf(x); }
961 template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
962 double log1p(
const double &x) { return ::log1p(x); }
965 template<
typename ScalarX,
typename ScalarY>
967 inline typename internal::pow_impl<ScalarX,ScalarY>::result_type pow(
const ScalarX& x,
const ScalarY& y)
969 return internal::pow_impl<ScalarX,ScalarY>::run(x, y);
972 template<
typename T> EIGEN_DEVICE_FUNC bool (isnan) (
const T &x) {
return internal::isnan_impl(x); }
973 template<
typename T> EIGEN_DEVICE_FUNC bool (isinf) (
const T &x) {
return internal::isinf_impl(x); }
974 template<
typename T> EIGEN_DEVICE_FUNC bool (isfinite)(
const T &x) {
return internal::isfinite_impl(x); }
976 template<
typename Scalar>
978 inline EIGEN_MATHFUNC_RETVAL(round, Scalar) round(const Scalar& x)
980 return EIGEN_MATHFUNC_IMPL(round, Scalar)::run(x);
985 T (floor)(
const T& x)
987 EIGEN_USING_STD_MATH(floor);
992 template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
993 float floor(
const float &x) { return ::floorf(x); }
995 template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
996 double floor(
const double &x) { return ::floor(x); }
1001 T (ceil)(
const T& x)
1003 EIGEN_USING_STD_MATH(ceil);
1008 template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
1009 float ceil(
const float &x) { return ::ceilf(x); }
1011 template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
1012 double ceil(
const double &x) { return ::ceil(x); }
1018 inline int log2(
int x)
1022 static const int table[32] = { 0, 9, 1, 10, 13, 21, 2, 29, 11, 14, 16, 18, 22, 25, 3, 30, 8, 12, 20, 28, 15, 17, 24, 7, 19, 27, 23, 6, 26, 5, 4, 31 };
1028 return table[(v * 0x07C4ACDDU) >> 27];
1039 template<
typename T>
1040 EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
1043 EIGEN_USING_STD_MATH(sqrt);
1047 template<
typename T>
1048 EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
1050 EIGEN_USING_STD_MATH(log);
1055 template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
1056 float log(
const float &x) { return ::logf(x); }
1058 template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
1059 double log(
const double &x) { return ::log(x); }
1062 template<
typename T>
1063 EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
1064 typename NumTraits<T>::Real abs(
const T &x) {
1065 EIGEN_USING_STD_MATH(abs);
1070 template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
1071 float abs(
const float &x) { return ::fabsf(x); }
1073 template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
1074 double abs(
const double &x) { return ::fabs(x); }
1076 template <> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
1077 float abs(
const std::complex<float>& x) {
1078 return ::hypotf(x.real(), x.imag());
1081 template <> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
1082 double abs(
const std::complex<double>& x) {
1083 return ::hypot(x.real(), x.imag());
1087 template<
typename T>
1088 EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
1090 EIGEN_USING_STD_MATH(exp);
1095 template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
1096 float exp(
const float &x) { return ::expf(x); }
1098 template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
1099 double exp(
const double &x) { return ::exp(x); }
1102 template<
typename T>
1103 EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
1105 EIGEN_USING_STD_MATH(cos);
1110 template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
1111 float cos(
const float &x) { return ::cosf(x); }
1113 template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
1114 double cos(
const double &x) { return ::cos(x); }
1117 template<
typename T>
1118 EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
1120 EIGEN_USING_STD_MATH(sin);
1125 template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
1126 float sin(
const float &x) { return ::sinf(x); }
1128 template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
1129 double sin(
const double &x) { return ::sin(x); }
1132 template<
typename T>
1133 EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
1135 EIGEN_USING_STD_MATH(tan);
1140 template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
1141 float tan(
const float &x) { return ::tanf(x); }
1143 template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
1144 double tan(
const double &x) { return ::tan(x); }
1147 template<
typename T>
1148 EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
1149 T acos(
const T &x) {
1150 EIGEN_USING_STD_MATH(acos);
1155 template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
1156 float acos(
const float &x) { return ::acosf(x); }
1158 template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
1159 double acos(
const double &x) { return ::acos(x); }
1162 template<
typename T>
1163 EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
1164 T asin(
const T &x) {
1165 EIGEN_USING_STD_MATH(asin);
1170 template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
1171 float asin(
const float &x) { return ::asinf(x); }
1173 template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
1174 double asin(
const double &x) { return ::asin(x); }
1177 template<
typename T>
1178 EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
1179 T atan(
const T &x) {
1180 EIGEN_USING_STD_MATH(atan);
1185 template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
1186 float atan(
const float &x) { return ::atanf(x); }
1188 template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
1189 double atan(
const double &x) { return ::atan(x); }
1193 template<
typename T>
1194 EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
1195 T cosh(
const T &x) {
1196 EIGEN_USING_STD_MATH(cosh);
1201 template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
1202 float cosh(
const float &x) { return ::coshf(x); }
1204 template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
1205 double cosh(
const double &x) { return ::cosh(x); }
1208 template<
typename T>
1209 EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
1210 T sinh(
const T &x) {
1211 EIGEN_USING_STD_MATH(sinh);
1216 template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
1217 float sinh(
const float &x) { return ::sinhf(x); }
1219 template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
1220 double sinh(
const double &x) { return ::sinh(x); }
1223 template<
typename T>
1224 EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
1225 T tanh(
const T &x) {
1226 EIGEN_USING_STD_MATH(tanh);
1230 #if (!defined(__CUDACC__)) && EIGEN_FAST_MATH 1231 EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
1232 float tanh(
float x) {
return internal::generic_fast_tanh_float(x); }
1236 template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
1237 float tanh(
const float &x) { return ::tanhf(x); }
1239 template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
1240 double tanh(
const double &x) { return ::tanh(x); }
1243 template <
typename T>
1244 EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
1245 T fmod(
const T& a,
const T& b) {
1246 EIGEN_USING_STD_MATH(fmod);
1252 EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
1253 float fmod(
const float& a,
const float& b) {
1254 return ::fmodf(a, b);
1258 EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
1259 double fmod(
const double& a,
const double& b) {
1260 return ::fmod(a, b);
1268 template<
typename T>
1269 EIGEN_DEVICE_FUNC
bool isfinite_impl(
const std::complex<T>& x)
1271 return (numext::isfinite)(numext::real(x)) && (numext::isfinite)(numext::imag(x));
1274 template<
typename T>
1275 EIGEN_DEVICE_FUNC
bool isnan_impl(
const std::complex<T>& x)
1277 return (numext::isnan)(numext::real(x)) || (numext::isnan)(numext::imag(x));
1280 template<
typename T>
1281 EIGEN_DEVICE_FUNC
bool isinf_impl(
const std::complex<T>& x)
1283 return ((numext::isinf)(numext::real(x)) || (numext::isinf)(numext::imag(x))) && (!(numext::isnan)(x));
1290 template<
typename Scalar,
1293 struct scalar_fuzzy_default_impl {};
1295 template<
typename Scalar>
1296 struct scalar_fuzzy_default_impl<Scalar, false, false>
1298 typedef typename NumTraits<Scalar>::Real RealScalar;
1299 template<
typename OtherScalar> EIGEN_DEVICE_FUNC
1300 static inline bool isMuchSmallerThan(
const Scalar& x,
const OtherScalar& y,
const RealScalar& prec)
1302 return numext::abs(x) <= numext::abs(y) * prec;
1305 static inline bool isApprox(
const Scalar& x,
const Scalar& y,
const RealScalar& prec)
1307 return numext::abs(x - y) <= numext::mini(numext::abs(x), numext::abs(y)) * prec;
1310 static inline bool isApproxOrLessThan(
const Scalar& x,
const Scalar& y,
const RealScalar& prec)
1312 return x <= y || isApprox(x, y, prec);
1316 template<
typename Scalar>
1317 struct scalar_fuzzy_default_impl<Scalar, false, true>
1319 typedef typename NumTraits<Scalar>::Real RealScalar;
1320 template<
typename OtherScalar> EIGEN_DEVICE_FUNC
1321 static inline bool isMuchSmallerThan(
const Scalar& x,
const Scalar&,
const RealScalar&)
1323 return x == Scalar(0);
1326 static inline bool isApprox(
const Scalar& x,
const Scalar& y,
const RealScalar&)
1331 static inline bool isApproxOrLessThan(
const Scalar& x,
const Scalar& y,
const RealScalar&)
1337 template<
typename Scalar>
1338 struct scalar_fuzzy_default_impl<Scalar, true, false>
1340 typedef typename NumTraits<Scalar>::Real RealScalar;
1341 template<
typename OtherScalar> EIGEN_DEVICE_FUNC
1342 static inline bool isMuchSmallerThan(
const Scalar& x,
const OtherScalar& y,
const RealScalar& prec)
1344 return numext::abs2(x) <= numext::abs2(y) * prec * prec;
1347 static inline bool isApprox(
const Scalar& x,
const Scalar& y,
const RealScalar& prec)
1349 return numext::abs2(x - y) <= numext::mini(numext::abs2(x), numext::abs2(y)) * prec * prec;
1353 template<
typename Scalar>
1354 struct scalar_fuzzy_impl : scalar_fuzzy_default_impl<Scalar, NumTraits<Scalar>::IsComplex, NumTraits<Scalar>::IsInteger> {};
1356 template<
typename Scalar,
typename OtherScalar> EIGEN_DEVICE_FUNC
1357 inline bool isMuchSmallerThan(
const Scalar& x,
const OtherScalar& y,
1358 const typename NumTraits<Scalar>::Real &precision = NumTraits<Scalar>::dummy_precision())
1360 return scalar_fuzzy_impl<Scalar>::template isMuchSmallerThan<OtherScalar>(x, y, precision);
1363 template<
typename Scalar> EIGEN_DEVICE_FUNC
1364 inline bool isApprox(
const Scalar& x,
const Scalar& y,
1365 const typename NumTraits<Scalar>::Real &precision = NumTraits<Scalar>::dummy_precision())
1367 return scalar_fuzzy_impl<Scalar>::isApprox(x, y, precision);
1370 template<
typename Scalar> EIGEN_DEVICE_FUNC
1371 inline bool isApproxOrLessThan(
const Scalar& x,
const Scalar& y,
1372 const typename NumTraits<Scalar>::Real &precision = NumTraits<Scalar>::dummy_precision())
1374 return scalar_fuzzy_impl<Scalar>::isApproxOrLessThan(x, y, precision);
1381 template<>
struct random_impl<bool>
1383 static inline bool run()
1385 return random<int>(0,1)==0 ?
false :
true;
1389 template<>
struct scalar_fuzzy_impl<bool>
1391 typedef bool RealScalar;
1393 template<
typename OtherScalar> EIGEN_DEVICE_FUNC
1394 static inline bool isMuchSmallerThan(
const bool& x,
const bool&,
const bool&)
1400 static inline bool isApprox(
bool x,
bool y,
bool)
1406 static inline bool isApproxOrLessThan(
const bool& x,
const bool& y,
const bool&)
1418 #endif // EIGEN_MATHFUNCTIONS_H Namespace containing all symbols from the Eigen library.
Definition: bench_norm.cpp:85
Definition: BandTriangularSolver.h:13
Definition: datatypes.h:12