11 #ifndef EIGEN_INVERSE_IMPL_H 12 #define EIGEN_INVERSE_IMPL_H 22 template<
typename MatrixType,
typename ResultType,
int Size = MatrixType::RowsAtCompileTime>
26 static inline void run(
const MatrixType& matrix, ResultType& result)
28 result = matrix.partialPivLu().inverse();
32 template<
typename MatrixType,
typename ResultType,
int Size = MatrixType::RowsAtCompileTime>
39 template<
typename MatrixType,
typename ResultType>
43 static inline void run(
const MatrixType& matrix, ResultType& result)
45 typedef typename MatrixType::Scalar Scalar;
47 result.coeffRef(0,0) = Scalar(1) / matrixEval.coeff(0,0);
51 template<
typename MatrixType,
typename ResultType>
55 static inline void run(
56 const MatrixType& matrix,
57 const typename MatrixType::RealScalar& absDeterminantThreshold,
59 typename ResultType::Scalar& determinant,
64 determinant = matrix.coeff(0,0);
65 invertible = abs(determinant) > absDeterminantThreshold;
66 if(invertible) result.coeffRef(0,0) =
typename ResultType::Scalar(1) / determinant;
74 template<
typename MatrixType,
typename ResultType>
76 inline void compute_inverse_size2_helper(
77 const MatrixType& matrix,
const typename ResultType::Scalar& invdet,
80 result.coeffRef(0,0) = matrix.coeff(1,1) * invdet;
81 result.coeffRef(1,0) = -matrix.coeff(1,0) * invdet;
82 result.coeffRef(0,1) = -matrix.coeff(0,1) * invdet;
83 result.coeffRef(1,1) = matrix.coeff(0,0) * invdet;
86 template<
typename MatrixType,
typename ResultType>
90 static inline void run(
const MatrixType& matrix, ResultType& result)
92 typedef typename ResultType::Scalar Scalar;
93 const Scalar invdet =
typename MatrixType::Scalar(1) / matrix.determinant();
94 compute_inverse_size2_helper(matrix, invdet, result);
98 template<
typename MatrixType,
typename ResultType>
102 static inline void run(
103 const MatrixType& matrix,
104 const typename MatrixType::RealScalar& absDeterminantThreshold,
106 typename ResultType::Scalar& determinant,
111 typedef typename ResultType::Scalar Scalar;
112 determinant = matrix.determinant();
113 invertible = abs(determinant) > absDeterminantThreshold;
114 if(!invertible)
return;
115 const Scalar invdet = Scalar(1) / determinant;
116 compute_inverse_size2_helper(matrix, invdet, inverse);
124 template<
typename MatrixType,
int i,
int j>
126 inline typename MatrixType::Scalar cofactor_3x3(
const MatrixType& m)
134 return m.coeff(i1, j1) * m.coeff(i2, j2)
135 - m.coeff(i1, j2) * m.coeff(i2, j1);
138 template<
typename MatrixType,
typename ResultType>
140 inline void compute_inverse_size3_helper(
141 const MatrixType& matrix,
142 const typename ResultType::Scalar& invdet,
146 result.row(0) = cofactors_col0 * invdet;
147 result.
coeffRef(1,0) = cofactor_3x3<MatrixType,0,1>(matrix) * invdet;
148 result.coeffRef(1,1) = cofactor_3x3<MatrixType,1,1>(matrix) * invdet;
149 result.coeffRef(1,2) = cofactor_3x3<MatrixType,2,1>(matrix) * invdet;
150 result.coeffRef(2,0) = cofactor_3x3<MatrixType,0,2>(matrix) * invdet;
151 result.coeffRef(2,1) = cofactor_3x3<MatrixType,1,2>(matrix) * invdet;
152 result.coeffRef(2,2) = cofactor_3x3<MatrixType,2,2>(matrix) * invdet;
155 template<
typename MatrixType,
typename ResultType>
159 static inline void run(
const MatrixType& matrix, ResultType& result)
161 typedef typename ResultType::Scalar Scalar;
163 cofactors_col0.
coeffRef(0) = cofactor_3x3<MatrixType,0,0>(matrix);
164 cofactors_col0.
coeffRef(1) = cofactor_3x3<MatrixType,1,0>(matrix);
165 cofactors_col0.
coeffRef(2) = cofactor_3x3<MatrixType,2,0>(matrix);
166 const Scalar det = (cofactors_col0.cwiseProduct(matrix.col(0))).sum();
167 const Scalar invdet = Scalar(1) / det;
168 compute_inverse_size3_helper(matrix, invdet, cofactors_col0, result);
172 template<
typename MatrixType,
typename ResultType>
176 static inline void run(
177 const MatrixType& matrix,
178 const typename MatrixType::RealScalar& absDeterminantThreshold,
180 typename ResultType::Scalar& determinant,
185 typedef typename ResultType::Scalar Scalar;
187 cofactors_col0.
coeffRef(0) = cofactor_3x3<MatrixType,0,0>(matrix);
188 cofactors_col0.
coeffRef(1) = cofactor_3x3<MatrixType,1,0>(matrix);
189 cofactors_col0.
coeffRef(2) = cofactor_3x3<MatrixType,2,0>(matrix);
190 determinant = (cofactors_col0.cwiseProduct(matrix.col(0))).sum();
191 invertible = abs(determinant) > absDeterminantThreshold;
192 if(!invertible)
return;
193 const Scalar invdet = Scalar(1) / determinant;
194 compute_inverse_size3_helper(matrix, invdet, cofactors_col0, inverse);
202 template<
typename Derived>
204 inline const typename Derived::Scalar general_det3_helper
207 return matrix.coeff(i1,j1)
208 * (matrix.coeff(i2,j2) * matrix.coeff(i3,j3) - matrix.coeff(i2,j3) * matrix.coeff(i3,j2));
211 template<
typename MatrixType,
int i,
int j>
213 inline typename MatrixType::Scalar cofactor_4x4(
const MatrixType& matrix)
223 return general_det3_helper(matrix, i1, i2, i3, j1, j2, j3)
224 + general_det3_helper(matrix, i2, i3, i1, j1, j2, j3)
225 + general_det3_helper(matrix, i3, i1, i2, j1, j2, j3);
228 template<
int Arch,
typename Scalar,
typename MatrixType,
typename ResultType>
232 static void run(
const MatrixType& matrix, ResultType& result)
234 result.coeffRef(0,0) = cofactor_4x4<MatrixType,0,0>(matrix);
235 result.coeffRef(1,0) = -cofactor_4x4<MatrixType,0,1>(matrix);
236 result.coeffRef(2,0) = cofactor_4x4<MatrixType,0,2>(matrix);
237 result.coeffRef(3,0) = -cofactor_4x4<MatrixType,0,3>(matrix);
238 result.coeffRef(0,2) = cofactor_4x4<MatrixType,2,0>(matrix);
239 result.coeffRef(1,2) = -cofactor_4x4<MatrixType,2,1>(matrix);
240 result.coeffRef(2,2) = cofactor_4x4<MatrixType,2,2>(matrix);
241 result.coeffRef(3,2) = -cofactor_4x4<MatrixType,2,3>(matrix);
242 result.coeffRef(0,1) = -cofactor_4x4<MatrixType,1,0>(matrix);
243 result.coeffRef(1,1) = cofactor_4x4<MatrixType,1,1>(matrix);
244 result.coeffRef(2,1) = -cofactor_4x4<MatrixType,1,2>(matrix);
245 result.coeffRef(3,1) = cofactor_4x4<MatrixType,1,3>(matrix);
246 result.coeffRef(0,3) = -cofactor_4x4<MatrixType,3,0>(matrix);
247 result.coeffRef(1,3) = cofactor_4x4<MatrixType,3,1>(matrix);
248 result.coeffRef(2,3) = -cofactor_4x4<MatrixType,3,2>(matrix);
249 result.coeffRef(3,3) = cofactor_4x4<MatrixType,3,3>(matrix);
250 result /= (matrix.col(0).cwiseProduct(result.row(0).transpose())).sum();
254 template<
typename MatrixType,
typename ResultType>
257 MatrixType, ResultType>
261 template<
typename MatrixType,
typename ResultType>
265 static inline void run(
266 const MatrixType& matrix,
267 const typename MatrixType::RealScalar& absDeterminantThreshold,
269 typename ResultType::Scalar& determinant,
274 determinant = matrix.determinant();
275 invertible = abs(determinant) > absDeterminantThreshold;
289 template<
typename DstXprType,
typename XprType>
295 Index dstRows = src.rows();
296 Index dstCols = src.cols();
297 if((dst.rows()!=dstRows) || (dst.cols()!=dstCols))
298 dst.resize(dstRows, dstCols);
300 const int Size = EIGEN_PLAIN_ENUM_MIN(XprType::ColsAtCompileTime,DstXprType::ColsAtCompileTime);
301 EIGEN_ONLY_USED_FOR_DEBUG(Size);
302 eigen_assert(( (Size<=1) || (Size>4) || (extract_data(src.nestedExpression())!=extract_data(dst)))
303 &&
"Aliasing problem detected in inverse(), you need to do inverse().eval() here.");
308 ActualXprType actual_xpr(src.nestedExpression());
334 template<
typename Derived>
338 eigen_assert(rows() == cols());
360 template<
typename Derived>
361 template<
typename ResultType>
364 typename ResultType::Scalar& determinant,
366 const RealScalar& absDeterminantThreshold
370 eigen_assert(rows() == cols());
374 RowsAtCompileTime == 2,
379 (derived(), absDeterminantThreshold, inverse, determinant, invertible);
399 template<
typename Derived>
400 template<
typename ResultType>
404 const RealScalar& absDeterminantThreshold
407 RealScalar determinant;
409 eigen_assert(rows() == cols());
410 computeInverseAndDetWithCheck(inverse,determinant,invertible,absDeterminantThreshold);
415 #endif // EIGEN_INVERSE_IMPL_H Definition: InverseImpl.h:23
Definition: InverseImpl.h:33
Namespace containing all symbols from the Eigen library.
Definition: bench_norm.cpp:85
Holds information about the various numeric (i.e.
Definition: NumTraits.h:150
Definition: AssignmentFunctors.h:21
Definition: AssignEvaluator.h:753
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar & coeffRef(Index rowId, Index colId)
This is an overloaded version of DenseCoeffsBase<Derived,WriteAccessors>::coeffRef(Index,Index) const provided to by-pass the creation of an evaluator of the expression, thus saving compilation efforts.
Definition: PlainObjectBase.h:177
Definition: AssignEvaluator.h:743
void computeInverseAndDetWithCheck(ResultType &inverse, typename ResultType::Scalar &determinant, bool &invertible, const RealScalar &absDeterminantThreshold=NumTraits< Scalar >::dummy_precision()) const
Definition: InverseImpl.h:362
Expression of the inverse of another expression.
Definition: Inverse.h:43
EIGEN_DEFAULT_DENSE_INDEX_TYPE Index
The Index type as used for the API.
Definition: Meta.h:33
Definition: InverseImpl.h:229
Definition: BandTriangularSolver.h:13
const Inverse< Derived > inverse() const
Definition: InverseImpl.h:335
Generic expression where a coefficient-wise unary operator is applied to an expression.
Definition: CwiseUnaryOp.h:55
The matrix class, also used for vectors and row-vectors.
Definition: Matrix.h:178
void computeInverseWithCheck(ResultType &inverse, bool &invertible, const RealScalar &absDeterminantThreshold=NumTraits< Scalar >::dummy_precision()) const
Definition: InverseImpl.h:401
Base class for all dense matrices, vectors, and expressions.
Definition: MatrixBase.h:48