12 #ifndef KRONECKER_TENSOR_PRODUCT_H 13 #define KRONECKER_TENSOR_PRODUCT_H 24 template<
typename Derived>
29 typedef typename Traits::Scalar Scalar;
32 typedef typename Traits::Lhs Lhs;
33 typedef typename Traits::Rhs Rhs;
41 inline Index rows()
const {
return m_A.rows() * m_B.rows(); }
42 inline Index cols()
const {
return m_A.cols() * m_B.cols(); }
50 return m_A.coeff(row / m_B.rows(), col / m_B.cols()) *
51 m_B.coeff(row % m_B.rows(), col % m_B.cols());
60 EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived);
61 return m_A.coeff(i / m_A.size()) * m_B.coeff(i % m_A.size());
65 typename Lhs::Nested m_A;
66 typename Rhs::Nested m_B;
81 template<
typename Lhs,
typename Rhs>
96 template<
typename Dest>
void evalTo(Dest& dst)
const;
114 template<
typename Lhs,
typename Rhs>
129 template<
typename Dest>
void evalTo(Dest& dst)
const;
132 template<
typename Lhs,
typename Rhs>
133 template<
typename Dest>
136 const int BlockRows = Rhs::RowsAtCompileTime,
137 BlockCols = Rhs::ColsAtCompileTime;
138 const Index Br = m_B.rows(),
140 for (
Index i=0; i < m_A.rows(); ++i)
141 for (
Index j=0; j < m_A.cols(); ++j)
145 template<
typename Lhs,
typename Rhs>
146 template<
typename Dest>
149 Index Br = m_B.rows(), Bc = m_B.cols();
150 dst.resize(this->rows(), this->cols());
151 dst.resizeNonZeros(0);
156 const Lhs1 lhs1(m_A);
159 const Rhs1 rhs1(m_B);
168 VectorXi nnzA = VectorXi::Zero(Dest::IsRowMajor ? m_A.rows() : m_A.cols());
169 for (
Index kA=0; kA < m_A.outerSize(); ++kA)
170 for (LhsInnerIterator itA(lhs1,kA); itA; ++itA)
171 nnzA(Dest::IsRowMajor ? itA.row() : itA.col())++;
173 VectorXi nnzB = VectorXi::Zero(Dest::IsRowMajor ? m_B.rows() : m_B.cols());
174 for (
Index kB=0; kB < m_B.outerSize(); ++kB)
175 for (RhsInnerIterator itB(rhs1,kB); itB; ++itB)
176 nnzB(Dest::IsRowMajor ? itB.row() : itB.col())++;
179 dst.reserve(VectorXi::Map(nnzAB.
data(), nnzAB.size()));
182 for (
Index kA=0; kA < m_A.outerSize(); ++kA)
184 for (
Index kB=0; kB < m_B.outerSize(); ++kB)
186 for (LhsInnerIterator itA(lhs1,kA); itA; ++itA)
188 for (RhsInnerIterator itB(rhs1,kB); itB; ++itB)
190 Index i = itA.row() * Br + itB.row(),
191 j = itA.col() * Bc + itB.col();
192 dst.insert(i,j) = itA.value() * itB.value();
201 template<
typename _Lhs,
typename _Rhs>
219 template<
typename _Lhs,
typename _Rhs>
230 LhsFlags = Lhs::Flags,
231 RhsFlags = Rhs::Flags,
238 EvalToRowMajor = (LhsFlags & RhsFlags &
RowMajorBit),
241 Flags = ((LhsFlags | RhsFlags) & HereditaryBits & RemovedBits)
270 template<
typename A,
typename B>
297 template<
typename A,
typename B>
305 #endif // KRONECKER_TENSOR_PRODUCT_H const int HugeCost
This value means that the cost to evaluate an expression coefficient is either very expensive or cann...
Definition: Constants.h:39
A versatible sparse matrix representation.
Definition: SparseMatrix.h:92
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar * data() const
Definition: PlainObjectBase.h:249
Scalar coeff(Index row, Index col) const
Definition: KroneckerTensorProduct.h:48
Namespace containing all symbols from the Eigen library.
Definition: bench_norm.cpp:85
void evalTo(Dest &dst) const
Evaluate the Kronecker tensor product.
Definition: KroneckerTensorProduct.h:134
const unsigned int RowMajorBit
for a matrix, this means that the storage order is row-major.
Definition: Constants.h:61
Common base class for all classes T such that MatrixBase has an operator=(T) and a constructor Matrix...
Definition: EigenBase.h:28
The type used to identify a matrix expression.
Definition: Constants.h:506
Definition: ReturnByValue.h:50
Definition: BinaryFunctors.h:76
KroneckerProductSparse(const Lhs &A, const Rhs &B)
Constructor.
Definition: KroneckerTensorProduct.h:124
EIGEN_DEFAULT_DENSE_INDEX_TYPE Index
The Index type as used for the API.
Definition: Meta.h:33
KroneckerProductBase(const Lhs &A, const Rhs &B)
Constructor.
Definition: KroneckerTensorProduct.h:37
Definition: BandTriangularSolver.h:13
Expression of a fixed-size or dynamic-size block.
Definition: Block.h:103
Determines whether the given binary operation of two numeric types is allowed and what the scalar ret...
Definition: XprHelper.h:757
KroneckerProduct(const Lhs &A, const Rhs &B)
Constructor.
Definition: KroneckerTensorProduct.h:91
KroneckerProduct< A, B > kroneckerProduct(const MatrixBase< A > &a, const MatrixBase< B > &b)
Definition: KroneckerTensorProduct.h:271
const unsigned int EvalBeforeNestingBit
means the expression should be evaluated by the calling expression
Definition: Constants.h:65
Generic expression where a coefficient-wise unary operator is applied to an expression.
Definition: CwiseUnaryOp.h:55
The matrix class, also used for vectors and row-vectors.
Definition: Matrix.h:178
void evalTo(Dest &dst) const
Evaluate the Kronecker tensor product.
Definition: KroneckerTensorProduct.h:147
EIGEN_DEVICE_FUNC Derived & derived()
Definition: EigenBase.h:44
Base class for all dense matrices, vectors, and expressions.
Definition: MatrixBase.h:48
Kronecker tensor product helper class for dense matrices.
Definition: KroneckerTensorProduct.h:82
The base class of dense and sparse Kronecker product.
Definition: KroneckerTensorProduct.h:25
Definition: XprHelper.h:261
Kronecker tensor product helper class for sparse matrices.
Definition: KroneckerTensorProduct.h:115
An InnerIterator allows to loop over the element of any matrix expression.
Definition: CoreIterators.h:33
Scalar coeff(Index i) const
Definition: KroneckerTensorProduct.h:58