10 #ifndef EIGEN_MATRIX_POWER 11 #define EIGEN_MATRIX_POWER 38 template<
typename MatrixType>
42 typedef typename MatrixType::RealScalar RealScalar;
43 typedef typename MatrixType::Index Index;
59 template<
typename ResultType>
60 inline void evalTo(ResultType& res)
const 61 { m_pow.compute(res, m_p); }
63 Index rows()
const {
return m_pow.rows(); }
64 Index cols()
const {
return m_pow.cols(); }
86 template<
typename MatrixType>
91 RowsAtCompileTime = MatrixType::RowsAtCompileTime,
92 MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime
94 typedef typename MatrixType::Scalar Scalar;
95 typedef typename MatrixType::RealScalar RealScalar;
96 typedef std::complex<RealScalar> ComplexScalar;
97 typedef typename MatrixType::Index Index;
100 const MatrixType& m_A;
103 void computePade(
int degree,
const MatrixType& IminusT, ResultType& res)
const;
104 void compute2x2(ResultType& res, RealScalar p)
const;
105 void computeBig(ResultType& res)
const;
106 static int getPadeDegree(
float normIminusT);
107 static int getPadeDegree(
double normIminusT);
108 static int getPadeDegree(
long double normIminusT);
109 static ComplexScalar computeSuperDiag(
const ComplexScalar&,
const ComplexScalar&, RealScalar p);
110 static RealScalar computeSuperDiag(RealScalar, RealScalar, RealScalar p);
132 void compute(ResultType& res)
const;
135 template<
typename MatrixType>
139 eigen_assert(T.rows() == T.cols());
140 eigen_assert(p > -1 && p < 1);
143 template<
typename MatrixType>
147 switch (m_A.rows()) {
151 res(0,0) = pow(m_A(0,0), m_p);
154 compute2x2(res, m_p);
161 template<
typename MatrixType>
165 res = (m_p-degree) / (2*i-2) * IminusT;
168 res = (MatrixType::Identity(IminusT.rows(), IminusT.cols()) + res).template triangularView<Upper>()
169 .solve((i==1 ? -m_p : i&1 ? (-m_p-i/2)/(2*i) : (m_p-i/2)/(2*i-2)) * IminusT).eval();
171 res += MatrixType::Identity(IminusT.rows(), IminusT.cols());
175 template<
typename MatrixType>
180 res.coeffRef(0,0) = pow(m_A.coeff(0,0), p);
182 for (Index i=1; i < m_A.cols(); ++i) {
183 res.coeffRef(i,i) = pow(m_A.coeff(i,i), p);
184 if (m_A.coeff(i-1,i-1) == m_A.coeff(i,i))
185 res.coeffRef(i-1,i) = p * pow(m_A.coeff(i,i), p-1);
186 else if (2*abs(m_A.coeff(i-1,i-1)) < abs(m_A.coeff(i,i)) || 2*abs(m_A.coeff(i,i)) < abs(m_A.coeff(i-1,i-1)))
187 res.coeffRef(i-1,i) = (res.coeff(i,i)-res.coeff(i-1,i-1)) / (m_A.coeff(i,i)-m_A.coeff(i-1,i-1));
189 res.coeffRef(i-1,i) = computeSuperDiag(m_A.coeff(i,i), m_A.coeff(i-1,i-1), p);
190 res.coeffRef(i-1,i) *= m_A.coeff(i-1,i);
194 template<
typename MatrixType>
198 const int digits = std::numeric_limits<RealScalar>::digits;
199 const RealScalar maxNormForPade = digits <= 24? 4.3386528e-1L
200 : digits <= 53? 2.789358995219730e-1L
201 : digits <= 64? 2.4471944416607995472e-1L
202 : digits <= 106? 1.1016843812851143391275867258512e-1L
203 : 9.134603732914548552537150753385375e-2L;
204 MatrixType IminusT, sqrtT,
T = m_A.template triangularView<Upper>();
205 RealScalar normIminusT;
206 int degree, degree2, numberOfSquareRoots = 0;
207 bool hasExtraSquareRoot =
false;
209 for (Index i=0; i < m_A.cols(); ++i)
210 eigen_assert(m_A(i,i) != RealScalar(0));
213 IminusT = MatrixType::Identity(m_A.rows(), m_A.cols()) - T;
214 normIminusT = IminusT.cwiseAbs().colwise().sum().maxCoeff();
215 if (normIminusT < maxNormForPade) {
216 degree = getPadeDegree(normIminusT);
217 degree2 = getPadeDegree(normIminusT/2);
218 if (degree - degree2 <= 1 || hasExtraSquareRoot)
220 hasExtraSquareRoot =
true;
223 T = sqrtT.template triangularView<Upper>();
224 ++numberOfSquareRoots;
226 computePade(degree, IminusT, res);
228 for (; numberOfSquareRoots; --numberOfSquareRoots) {
229 compute2x2(res, ldexp(m_p, -numberOfSquareRoots));
230 res = res.template triangularView<Upper>() * res;
232 compute2x2(res, m_p);
235 template<
typename MatrixType>
238 const float maxNormForPade[] = { 2.8064004e-1f , 4.3386528e-1f };
240 for (; degree <= 4; ++degree)
241 if (normIminusT <= maxNormForPade[degree - 3])
246 template<
typename MatrixType>
249 const double maxNormForPade[] = { 1.884160592658218e-2 , 6.038881904059573e-2, 1.239917516308172e-1,
250 1.999045567181744e-1, 2.789358995219730e-1 };
252 for (; degree <= 7; ++degree)
253 if (normIminusT <= maxNormForPade[degree - 3])
258 template<
typename MatrixType>
261 #if LDBL_MANT_DIG == 53 262 const int maxPadeDegree = 7;
263 const double maxNormForPade[] = { 1.884160592658218e-2L , 6.038881904059573e-2L, 1.239917516308172e-1L,
264 1.999045567181744e-1L, 2.789358995219730e-1L };
265 #elif LDBL_MANT_DIG <= 64 266 const int maxPadeDegree = 8;
267 const long double maxNormForPade[] = { 6.3854693117491799460e-3L , 2.6394893435456973676e-2L,
268 6.4216043030404063729e-2L, 1.1701165502926694307e-1L, 1.7904284231268670284e-1L, 2.4471944416607995472e-1L };
269 #elif LDBL_MANT_DIG <= 106 270 const int maxPadeDegree = 10;
271 const double maxNormForPade[] = { 1.0007161601787493236741409687186e-4L ,
272 1.0007161601787493236741409687186e-3L, 4.7069769360887572939882574746264e-3L, 1.3220386624169159689406653101695e-2L,
273 2.8063482381631737920612944054906e-2L, 4.9625993951953473052385361085058e-2L, 7.7367040706027886224557538328171e-2L,
274 1.1016843812851143391275867258512e-1L };
276 const int maxPadeDegree = 10;
277 const double maxNormForPade[] = { 5.524506147036624377378713555116378e-5L ,
278 6.640600568157479679823602193345995e-4L, 3.227716520106894279249709728084626e-3L,
279 9.619593944683432960546978734646284e-3L, 2.134595382433742403911124458161147e-2L,
280 3.908166513900489428442993794761185e-2L, 6.266780814639442865832535460550138e-2L,
281 9.134603732914548552537150753385375e-2L };
284 for (; degree <= maxPadeDegree; ++degree)
285 if (normIminusT <= maxNormForPade[degree - 3])
290 template<
typename MatrixType>
291 inline typename MatrixPowerAtomic<MatrixType>::ComplexScalar
299 ComplexScalar logCurr = log(curr);
300 ComplexScalar logPrev = log(prev);
301 int unwindingNumber = ceil((numext::imag(logCurr - logPrev) - RealScalar(EIGEN_PI)) / RealScalar(2*EIGEN_PI));
302 ComplexScalar w = numext::log1p((curr-prev)/prev)/RealScalar(2) + ComplexScalar(0, EIGEN_PI*unwindingNumber);
303 return RealScalar(2) * exp(RealScalar(0.5) * p * (logCurr + logPrev)) * sinh(p * w) / (curr - prev);
306 template<
typename MatrixType>
307 inline typename MatrixPowerAtomic<MatrixType>::RealScalar
314 RealScalar w = numext::log1p((curr-prev)/prev)/RealScalar(2);
315 return 2 * exp(p * (log(curr) + log(prev)) / 2) * sinh(p * w) / (curr - prev);
337 template<
typename MatrixType>
341 typedef typename MatrixType::Scalar Scalar;
342 typedef typename MatrixType::RealScalar RealScalar;
343 typedef typename MatrixType::Index Index;
356 m_conditionNumber(0),
359 { eigen_assert(A.rows() == A.cols()); }
378 template<
typename ResultType>
379 void compute(ResultType& res, RealScalar p);
381 Index rows()
const {
return m_A.rows(); }
382 Index cols()
const {
return m_A.cols(); }
385 typedef std::complex<RealScalar> ComplexScalar;
387 MatrixType::RowsAtCompileTime, MatrixType::ColsAtCompileTime>
ComplexMatrix;
390 typename MatrixType::Nested m_A;
396 ComplexMatrix m_T, m_U;
407 RealScalar m_conditionNumber;
424 void split(RealScalar& p, RealScalar& intpart);
429 template<
typename ResultType>
430 void computeIntPower(ResultType& res, RealScalar p);
432 template<
typename ResultType>
433 void computeFracPower(ResultType& res, RealScalar p);
435 template<
int Rows,
int Cols,
int Options,
int MaxRows,
int MaxCols>
436 static void revertSchur(
438 const ComplexMatrix&
T,
439 const ComplexMatrix& U);
441 template<
int Rows,
int Cols,
int Options,
int MaxRows,
int MaxCols>
442 static void revertSchur(
444 const ComplexMatrix& T,
445 const ComplexMatrix& U);
448 template<
typename MatrixType>
449 template<
typename ResultType>
457 res(0,0) = pow(m_A.coeff(0,0), p);
463 res = MatrixType::Identity(rows(), cols());
464 computeIntPower(res, intpart);
465 if (p) computeFracPower(res, p);
469 template<
typename MatrixType>
480 if (!m_conditionNumber && p)
484 if (p > RealScalar(0.5) && p > (1-p) * pow(m_conditionNumber, p)) {
490 template<
typename MatrixType>
495 ComplexScalar eigenvalue;
497 m_fT.resizeLike(m_A);
500 m_conditionNumber = m_T.diagonal().array().abs().maxCoeff() / m_T.diagonal().array().abs().minCoeff();
503 for (Index i = cols()-1; i>=0; --i) {
506 if (m_T.coeff(i,i) == RealScalar(0)) {
507 for (Index j=i+1; j < m_rank; ++j) {
508 eigenvalue = m_T.
coeff(j,j);
510 m_T.applyOnTheRight(j-1, j, rot);
511 m_T.applyOnTheLeft(j-1, j, rot.
adjoint());
512 m_T.coeffRef(j-1,j-1) = eigenvalue;
513 m_T.coeffRef(j,j) = RealScalar(0);
514 m_U.applyOnTheRight(j-1, j, rot);
520 m_nulls = rows() - m_rank;
522 eigen_assert(m_T.bottomRightCorner(m_nulls, m_nulls).isZero()
523 &&
"Base of matrix power should be invertible or with a semisimple zero eigenvalue.");
524 m_fT.bottomRows(m_nulls).fill(RealScalar(0));
528 template<
typename MatrixType>
529 template<
typename ResultType>
534 RealScalar pp = abs(p);
537 m_tmp = m_A.inverse();
542 if (fmod(pp, 2) >= 1)
551 template<
typename MatrixType>
552 template<
typename ResultType>
556 eigen_assert(m_conditionNumber);
557 eigen_assert(m_rank + m_nulls == rows());
561 m_fT.topRightCorner(m_rank, m_nulls) = m_T.topLeftCorner(m_rank, m_rank).template triangularView<Upper>()
562 .solve(blockTp * m_T.topRightCorner(m_rank, m_nulls));
564 revertSchur(m_tmp, m_fT, m_U);
568 template<
typename MatrixType>
569 template<
int Rows,
int Cols,
int Options,
int MaxRows,
int MaxCols>
574 { res.noalias() = U * (T.template triangularView<Upper>() * U.adjoint()); }
576 template<
typename MatrixType>
577 template<
int Rows,
int Cols,
int Options,
int MaxRows,
int MaxCols>
582 { res.noalias() = (U * (T.template triangularView<Upper>() * U.adjoint())).real(); }
597 template<
typename Derived>
601 typedef typename Derived::PlainObject PlainObject;
602 typedef typename Derived::RealScalar RealScalar;
603 typedef typename Derived::Index Index;
620 template<
typename ResultType>
621 inline void evalTo(ResultType& res)
const 624 Index rows()
const {
return m_A.rows(); }
625 Index cols()
const {
return m_A.cols(); }
629 const RealScalar m_p;
645 template<
typename Derived>
649 typedef typename Derived::PlainObject PlainObject;
650 typedef typename std::complex<typename Derived::RealScalar> ComplexScalar;
651 typedef typename Derived::Index Index;
671 template<
typename ResultType>
672 inline void evalTo(ResultType& res)
const 673 { res = (m_p * m_A.log()).exp(); }
675 Index rows()
const {
return m_A.rows(); }
676 Index cols()
const {
return m_A.cols(); }
680 const ComplexScalar m_p;
685 template<
typename MatrixPowerType>
687 {
typedef typename MatrixPowerType::PlainObject ReturnType; };
689 template<
typename Derived>
691 {
typedef typename Derived::PlainObject ReturnType; };
693 template<
typename Derived>
695 {
typedef typename Derived::PlainObject ReturnType; };
699 template<
typename Derived>
703 template<
typename Derived>
709 #endif // EIGEN_MATRIX_POWER Class for computing matrix powers.
Definition: MatrixPower.h:15
void makeGivens(const Scalar &p, const Scalar &q, Scalar *z=0)
Makes *this as a Givens rotation G such that applying to the left of the vector yields: ...
Definition: Jacobi.h:149
const MatrixPowerParenthesesReturnValue< MatrixType > operator()(RealScalar p)
Returns the matrix power.
Definition: MatrixPower.h:368
Namespace containing all symbols from the Eigen library.
Definition: bench_norm.cpp:85
Definition: ForwardDeclarations.h:263
Proxy for the matrix power of some matrix (expression).
Definition: ForwardDeclarations.h:289
Definition: ReturnByValue.h:50
void compute(ResultType &res, RealScalar p)
Compute the matrix power.
Definition: MatrixPower.h:450
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar & coeff(Index rowId, Index colId) const
This is an overloaded version of DenseCoeffsBase<Derived,ReadOnlyAccessors>::coeff(Index,Index) const provided to by-pass the creation of an evaluator of the expression, thus saving compilation efforts.
Definition: PlainObjectBase.h:154
MatrixComplexPowerReturnValue(const Derived &A, const ComplexScalar &p)
Constructor.
Definition: MatrixPower.h:659
void compute(ResultType &res) const
Compute the matrix power.
Definition: MatrixPower.h:144
MatrixPower(const MatrixType &A)
Constructor.
Definition: MatrixPower.h:354
Definition: BandTriangularSolver.h:13
Expression of a fixed-size or dynamic-size block.
Definition: Block.h:103
const ComplexMatrixType & matrixU() const
Returns the unitary matrix in the Schur decomposition.
Definition: ComplexSchur.h:138
MatrixPowerAtomic(const MatrixType &T, RealScalar p)
Constructor.
Definition: MatrixPower.h:136
MatrixPowerReturnValue(const Derived &A, RealScalar p)
Constructor.
Definition: MatrixPower.h:611
void evalTo(ResultType &res) const
Compute the matrix power.
Definition: MatrixPower.h:60
void matrix_sqrt_triangular(const MatrixType &arg, ResultType &result)
Compute matrix square root of triangular matrix.
Definition: MatrixSquareRoot.h:206
MatrixPowerParenthesesReturnValue(MatrixPower< MatrixType > &pow, RealScalar p)
Constructor.
Definition: MatrixPower.h:51
void evalTo(ResultType &res) const
Compute the matrix power.
Definition: MatrixPower.h:672
const int Dynamic
This value means that a positive quantity (e.g., a size) is not known at compile-time, and that instead the value is stored in some runtime variable.
Definition: Constants.h:21
Class for computing matrix powers.
Definition: MatrixPower.h:87
Proxy for the matrix power of some matrix.
Definition: MatrixPower.h:39
The matrix class, also used for vectors and row-vectors.
Definition: Matrix.h:178
Proxy for the matrix power of some matrix (expression).
Definition: ForwardDeclarations.h:288
Base class for all dense matrices, vectors, and expressions.
Definition: MatrixBase.h:48
const ComplexMatrixType & matrixT() const
Returns the triangular matrix in the Schur decomposition.
Definition: ComplexSchur.h:162
Definition: ForwardDeclarations.h:17
void evalTo(ResultType &res) const
Compute the matrix power.
Definition: MatrixPower.h:621
JacobiRotation adjoint() const
Returns the adjoint transformation.
Definition: Jacobi.h:62