compbio
NullaryFunctors.h
1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2008-2016 Gael Guennebaud <gael.guennebaud@inria.fr>
5 //
6 // This Source Code Form is subject to the terms of the Mozilla
7 // Public License v. 2.0. If a copy of the MPL was not distributed
8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9 
10 #ifndef EIGEN_NULLARY_FUNCTORS_H
11 #define EIGEN_NULLARY_FUNCTORS_H
12 
13 namespace Eigen {
14 
15 namespace internal {
16 
17 template<typename Scalar>
19  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE scalar_constant_op(const scalar_constant_op& other) : m_other(other.m_other) { }
20  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE scalar_constant_op(const Scalar& other) : m_other(other) { }
21  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar operator() () const { return m_other; }
22  template<typename PacketType>
23  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const PacketType packetOp() const { return internal::pset1<PacketType>(m_other); }
24  const Scalar m_other;
25 };
26 template<typename Scalar>
28 { enum { Cost = 0 /* as the constant value should be loaded in register only once for the whole expression */,
29  PacketAccess = packet_traits<Scalar>::Vectorizable, IsRepeatable = true }; };
30 
31 template<typename Scalar> struct scalar_identity_op {
32  EIGEN_EMPTY_STRUCT_CTOR(scalar_identity_op)
33  template<typename IndexType>
34  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar operator() (IndexType row, IndexType col) const { return row==col ? Scalar(1) : Scalar(0); }
35 };
36 template<typename Scalar>
38 { enum { Cost = NumTraits<Scalar>::AddCost, PacketAccess = false, IsRepeatable = true }; };
39 
40 template <typename Scalar, typename Packet, bool IsInteger> struct linspaced_op_impl;
41 
42 template <typename Scalar, typename Packet>
43 struct linspaced_op_impl<Scalar,Packet,/*IsInteger*/false>
44 {
45  linspaced_op_impl(const Scalar& low, const Scalar& high, Index num_steps) :
46  m_low(low), m_high(high), m_size1(num_steps==1 ? 1 : num_steps-1), m_step(num_steps==1 ? Scalar() : (high-low)/Scalar(num_steps-1)),
47  m_interPacket(plset<Packet>(0)),
48  m_flip(numext::abs(high)<numext::abs(low))
49  {}
50 
51  template<typename IndexType>
52  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar operator() (IndexType i) const {
53  if(m_flip)
54  return (i==0)? m_low : (m_high - (m_size1-i)*m_step);
55  else
56  return (i==m_size1)? m_high : (m_low + i*m_step);
57  }
58 
59  template<typename IndexType>
60  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Packet packetOp(IndexType i) const
61  {
62  // Principle:
63  // [low, ..., low] + ( [step, ..., step] * ( [i, ..., i] + [0, ..., size] ) )
64  if(m_flip)
65  {
66  Packet pi = padd(pset1<Packet>(Scalar(i-m_size1)),m_interPacket);
67  Packet res = padd(pset1<Packet>(m_high), pmul(pset1<Packet>(m_step), pi));
68  if(i==0)
69  res = pinsertfirst(res, m_low);
70  return res;
71  }
72  else
73  {
74  Packet pi = padd(pset1<Packet>(Scalar(i)),m_interPacket);
75  Packet res = padd(pset1<Packet>(m_low), pmul(pset1<Packet>(m_step), pi));
76  if(i==m_size1-unpacket_traits<Packet>::size+1)
77  res = pinsertlast(res, m_high);
78  return res;
79  }
80  }
81 
82  const Scalar m_low;
83  const Scalar m_high;
84  const Index m_size1;
85  const Scalar m_step;
86  const Packet m_interPacket;
87  const bool m_flip;
88 };
89 
90 template <typename Scalar, typename Packet>
91 struct linspaced_op_impl<Scalar,Packet,/*IsInteger*/true>
92 {
93  linspaced_op_impl(const Scalar& low, const Scalar& high, Index num_steps) :
94  m_low(low),
95  m_multiplier((high-low)/convert_index<Scalar>(num_steps<=1 ? 1 : num_steps-1)),
96  m_divisor(convert_index<Scalar>(num_steps+high-low)/(high-low+1)),
97  m_use_divisor((high+1)<(low+num_steps))
98  {}
99 
100  template<typename IndexType>
101  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
102  const Scalar operator() (IndexType i) const
103  {
104  if(m_use_divisor) return m_low + convert_index<Scalar>(i)/m_divisor;
105  else return m_low + convert_index<Scalar>(i)*m_multiplier;
106  }
107 
108  const Scalar m_low;
109  const Scalar m_multiplier;
110  const Scalar m_divisor;
111  const bool m_use_divisor;
112 };
113 
114 // ----- Linspace functor ----------------------------------------------------------------
115 
116 // Forward declaration (we default to random access which does not really give
117 // us a speed gain when using packet access but it allows to use the functor in
118 // nested expressions).
119 template <typename Scalar, typename PacketType> struct linspaced_op;
120 template <typename Scalar, typename PacketType> struct functor_traits< linspaced_op<Scalar,PacketType> >
121 {
122  enum
123  {
124  Cost = 1,
126  /*&& ((!NumTraits<Scalar>::IsInteger) || packet_traits<Scalar>::HasDiv),*/ // <- vectorization for integer is currently disabled
127  IsRepeatable = true
128  };
129 };
130 template <typename Scalar, typename PacketType> struct linspaced_op
131 {
132  linspaced_op(const Scalar& low, const Scalar& high, Index num_steps)
133  : impl((num_steps==1 ? high : low),high,num_steps)
134  {}
135 
136  template<typename IndexType>
137  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar operator() (IndexType i) const { return impl(i); }
138 
139  template<typename Packet,typename IndexType>
140  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Packet packetOp(IndexType i) const { return impl.packetOp(i); }
141 
142  // This proxy object handles the actual required temporaries and the different
143  // implementations (integer vs. floating point).
145 };
146 
147 // Linear access is automatically determined from the operator() prototypes available for the given functor.
148 // If it exposes an operator()(i,j), then we assume the i and j coefficients are required independently
149 // and linear access is not possible. In all other cases, linear access is enabled.
150 // Users should not have to deal with this structure.
151 template<typename Functor> struct functor_has_linear_access { enum { ret = !has_binary_operator<Functor>::value }; };
152 
153 // For unreliable compilers, let's specialize the has_*ary_operator
154 // helpers so that at least built-in nullary functors work fine.
155 #if !( (EIGEN_COMP_MSVC>1600) || (EIGEN_GNUC_AT_LEAST(4,8)) || (EIGEN_COMP_ICC>=1600))
156 template<typename Scalar,typename IndexType>
157 struct has_nullary_operator<scalar_constant_op<Scalar>,IndexType> { enum { value = 1}; };
158 template<typename Scalar,typename IndexType>
159 struct has_unary_operator<scalar_constant_op<Scalar>,IndexType> { enum { value = 0}; };
160 template<typename Scalar,typename IndexType>
161 struct has_binary_operator<scalar_constant_op<Scalar>,IndexType> { enum { value = 0}; };
162 
163 template<typename Scalar,typename IndexType>
164 struct has_nullary_operator<scalar_identity_op<Scalar>,IndexType> { enum { value = 0}; };
165 template<typename Scalar,typename IndexType>
166 struct has_unary_operator<scalar_identity_op<Scalar>,IndexType> { enum { value = 0}; };
167 template<typename Scalar,typename IndexType>
168 struct has_binary_operator<scalar_identity_op<Scalar>,IndexType> { enum { value = 1}; };
169 
170 template<typename Scalar, typename PacketType,typename IndexType>
171 struct has_nullary_operator<linspaced_op<Scalar,PacketType>,IndexType> { enum { value = 0}; };
172 template<typename Scalar, typename PacketType,typename IndexType>
173 struct has_unary_operator<linspaced_op<Scalar,PacketType>,IndexType> { enum { value = 1}; };
174 template<typename Scalar, typename PacketType,typename IndexType>
175 struct has_binary_operator<linspaced_op<Scalar,PacketType>,IndexType> { enum { value = 0}; };
176 
177 template<typename Scalar,typename IndexType>
178 struct has_nullary_operator<scalar_random_op<Scalar>,IndexType> { enum { value = 1}; };
179 template<typename Scalar,typename IndexType>
180 struct has_unary_operator<scalar_random_op<Scalar>,IndexType> { enum { value = 0}; };
181 template<typename Scalar,typename IndexType>
182 struct has_binary_operator<scalar_random_op<Scalar>,IndexType> { enum { value = 0}; };
183 #endif
184 
185 } // end namespace internal
186 
187 } // end namespace Eigen
188 
189 #endif // EIGEN_NULLARY_FUNCTORS_H
Definition: XprHelper.h:158
Namespace containing all symbols from the Eigen library.
Definition: bench_norm.cpp:85
Definition: NullaryFunctors.h:151
Holds information about the various numeric (i.e.
Definition: NumTraits.h:150
Definition: GenericPacketMath.h:96
Definition: Random.h:17
Definition: NullaryFunctors.h:40
EIGEN_DEFAULT_DENSE_INDEX_TYPE Index
The Index type as used for the API.
Definition: Meta.h:33
Definition: PacketMath.h:48
Definition: BandTriangularSolver.h:13
Definition: NullaryFunctors.h:119
Definition: XprHelper.h:146
Definition: NullaryFunctors.h:31
Definition: TensorMeta.h:50
Definition: NullaryFunctors.h:18