compbio
RealSchur.h
1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
5 // Copyright (C) 2010,2012 Jitse Niesen <jitse@maths.leeds.ac.uk>
6 //
7 // This Source Code Form is subject to the terms of the Mozilla
8 // Public License v. 2.0. If a copy of the MPL was not distributed
9 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
10 
11 #ifndef EIGEN_REAL_SCHUR_H
12 #define EIGEN_REAL_SCHUR_H
13 
14 #include "./HessenbergDecomposition.h"
15 
16 namespace Eigen {
17 
54 template<typename _MatrixType> class RealSchur
55 {
56  public:
57  typedef _MatrixType MatrixType;
58  enum {
59  RowsAtCompileTime = MatrixType::RowsAtCompileTime,
60  ColsAtCompileTime = MatrixType::ColsAtCompileTime,
61  Options = MatrixType::Options,
62  MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
63  MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
64  };
65  typedef typename MatrixType::Scalar Scalar;
66  typedef std::complex<typename NumTraits<Scalar>::Real> ComplexScalar;
67  typedef Eigen::Index Index;
68 
71 
83  explicit RealSchur(Index size = RowsAtCompileTime==Dynamic ? 1 : RowsAtCompileTime)
84  : m_matT(size, size),
85  m_matU(size, size),
86  m_workspaceVector(size),
87  m_hess(size),
88  m_isInitialized(false),
89  m_matUisUptodate(false),
90  m_maxIters(-1)
91  { }
92 
103  template<typename InputType>
104  explicit RealSchur(const EigenBase<InputType>& matrix, bool computeU = true)
105  : m_matT(matrix.rows(),matrix.cols()),
106  m_matU(matrix.rows(),matrix.cols()),
107  m_workspaceVector(matrix.rows()),
108  m_hess(matrix.rows()),
109  m_isInitialized(false),
110  m_matUisUptodate(false),
111  m_maxIters(-1)
112  {
113  compute(matrix.derived(), computeU);
114  }
115 
127  const MatrixType& matrixU() const
128  {
129  eigen_assert(m_isInitialized && "RealSchur is not initialized.");
130  eigen_assert(m_matUisUptodate && "The matrix U has not been computed during the RealSchur decomposition.");
131  return m_matU;
132  }
133 
144  const MatrixType& matrixT() const
145  {
146  eigen_assert(m_isInitialized && "RealSchur is not initialized.");
147  return m_matT;
148  }
149 
169  template<typename InputType>
170  RealSchur& compute(const EigenBase<InputType>& matrix, bool computeU = true);
171 
189  template<typename HessMatrixType, typename OrthMatrixType>
190  RealSchur& computeFromHessenberg(const HessMatrixType& matrixH, const OrthMatrixType& matrixQ, bool computeU);
196  {
197  eigen_assert(m_isInitialized && "RealSchur is not initialized.");
198  return m_info;
199  }
200 
206  RealSchur& setMaxIterations(Index maxIters)
207  {
208  m_maxIters = maxIters;
209  return *this;
210  }
211 
214  {
215  return m_maxIters;
216  }
217 
223  static const int m_maxIterationsPerRow = 40;
224 
225  private:
226 
227  MatrixType m_matT;
228  MatrixType m_matU;
229  ColumnVectorType m_workspaceVector;
231  ComputationInfo m_info;
232  bool m_isInitialized;
233  bool m_matUisUptodate;
234  Index m_maxIters;
235 
237 
238  Scalar computeNormOfT();
239  Index findSmallSubdiagEntry(Index iu);
240  void splitOffTwoRows(Index iu, bool computeU, const Scalar& exshift);
241  void computeShift(Index iu, Index iter, Scalar& exshift, Vector3s& shiftInfo);
242  void initFrancisQRStep(Index il, Index iu, const Vector3s& shiftInfo, Index& im, Vector3s& firstHouseholderVector);
243  void performFrancisQRStep(Index il, Index im, Index iu, bool computeU, const Vector3s& firstHouseholderVector, Scalar* workspace);
244 };
245 
246 
247 template<typename MatrixType>
248 template<typename InputType>
250 {
251  eigen_assert(matrix.cols() == matrix.rows());
252  Index maxIters = m_maxIters;
253  if (maxIters == -1)
254  maxIters = m_maxIterationsPerRow * matrix.rows();
255 
256  Scalar scale = matrix.derived().cwiseAbs().maxCoeff();
257 
258  // Step 1. Reduce to Hessenberg form
259  m_hess.compute(matrix.derived()/scale);
260 
261  // Step 2. Reduce to real Schur form
262  computeFromHessenberg(m_hess.matrixH(), m_hess.matrixQ(), computeU);
263 
264  m_matT *= scale;
265 
266  return *this;
267 }
268 template<typename MatrixType>
269 template<typename HessMatrixType, typename OrthMatrixType>
270 RealSchur<MatrixType>& RealSchur<MatrixType>::computeFromHessenberg(const HessMatrixType& matrixH, const OrthMatrixType& matrixQ, bool computeU)
271 {
272  using std::abs;
273 
274  m_matT = matrixH;
275  if(computeU)
276  m_matU = matrixQ;
277 
278  Index maxIters = m_maxIters;
279  if (maxIters == -1)
280  maxIters = m_maxIterationsPerRow * matrixH.rows();
281  m_workspaceVector.resize(m_matT.cols());
282  Scalar* workspace = &m_workspaceVector.coeffRef(0);
283 
284  // The matrix m_matT is divided in three parts.
285  // Rows 0,...,il-1 are decoupled from the rest because m_matT(il,il-1) is zero.
286  // Rows il,...,iu is the part we are working on (the active window).
287  // Rows iu+1,...,end are already brought in triangular form.
288  Index iu = m_matT.cols() - 1;
289  Index iter = 0; // iteration count for current eigenvalue
290  Index totalIter = 0; // iteration count for whole matrix
291  Scalar exshift(0); // sum of exceptional shifts
292  Scalar norm = computeNormOfT();
293 
294  if(norm!=0)
295  {
296  while (iu >= 0)
297  {
298  Index il = findSmallSubdiagEntry(iu);
299 
300  // Check for convergence
301  if (il == iu) // One root found
302  {
303  m_matT.coeffRef(iu,iu) = m_matT.coeff(iu,iu) + exshift;
304  if (iu > 0)
305  m_matT.coeffRef(iu, iu-1) = Scalar(0);
306  iu--;
307  iter = 0;
308  }
309  else if (il == iu-1) // Two roots found
310  {
311  splitOffTwoRows(iu, computeU, exshift);
312  iu -= 2;
313  iter = 0;
314  }
315  else // No convergence yet
316  {
317  // The firstHouseholderVector vector has to be initialized to something to get rid of a silly GCC warning (-O1 -Wall -DNDEBUG )
318  Vector3s firstHouseholderVector(0,0,0), shiftInfo;
319  computeShift(iu, iter, exshift, shiftInfo);
320  iter = iter + 1;
321  totalIter = totalIter + 1;
322  if (totalIter > maxIters) break;
323  Index im;
324  initFrancisQRStep(il, iu, shiftInfo, im, firstHouseholderVector);
325  performFrancisQRStep(il, im, iu, computeU, firstHouseholderVector, workspace);
326  }
327  }
328  }
329  if(totalIter <= maxIters)
330  m_info = Success;
331  else
332  m_info = NoConvergence;
333 
334  m_isInitialized = true;
335  m_matUisUptodate = computeU;
336  return *this;
337 }
338 
340 template<typename MatrixType>
341 inline typename MatrixType::Scalar RealSchur<MatrixType>::computeNormOfT()
342 {
343  const Index size = m_matT.cols();
344  // FIXME to be efficient the following would requires a triangular reduxion code
345  // Scalar norm = m_matT.upper().cwiseAbs().sum()
346  // + m_matT.bottomLeftCorner(size-1,size-1).diagonal().cwiseAbs().sum();
347  Scalar norm(0);
348  for (Index j = 0; j < size; ++j)
349  norm += m_matT.col(j).segment(0, (std::min)(size,j+2)).cwiseAbs().sum();
350  return norm;
351 }
352 
354 template<typename MatrixType>
356 {
357  using std::abs;
358  Index res = iu;
359  while (res > 0)
360  {
361  Scalar s = abs(m_matT.coeff(res-1,res-1)) + abs(m_matT.coeff(res,res));
362  if (abs(m_matT.coeff(res,res-1)) <= NumTraits<Scalar>::epsilon() * s)
363  break;
364  res--;
365  }
366  return res;
367 }
368 
370 template<typename MatrixType>
371 inline void RealSchur<MatrixType>::splitOffTwoRows(Index iu, bool computeU, const Scalar& exshift)
372 {
373  using std::sqrt;
374  using std::abs;
375  const Index size = m_matT.cols();
376 
377  // The eigenvalues of the 2x2 matrix [a b; c d] are
378  // trace +/- sqrt(discr/4) where discr = tr^2 - 4*det, tr = a + d, det = ad - bc
379  Scalar p = Scalar(0.5) * (m_matT.coeff(iu-1,iu-1) - m_matT.coeff(iu,iu));
380  Scalar q = p * p + m_matT.coeff(iu,iu-1) * m_matT.coeff(iu-1,iu); // q = tr^2 / 4 - det = discr/4
381  m_matT.coeffRef(iu,iu) += exshift;
382  m_matT.coeffRef(iu-1,iu-1) += exshift;
383 
384  if (q >= Scalar(0)) // Two real eigenvalues
385  {
386  Scalar z = sqrt(abs(q));
388  if (p >= Scalar(0))
389  rot.makeGivens(p + z, m_matT.coeff(iu, iu-1));
390  else
391  rot.makeGivens(p - z, m_matT.coeff(iu, iu-1));
392 
393  m_matT.rightCols(size-iu+1).applyOnTheLeft(iu-1, iu, rot.adjoint());
394  m_matT.topRows(iu+1).applyOnTheRight(iu-1, iu, rot);
395  m_matT.coeffRef(iu, iu-1) = Scalar(0);
396  if (computeU)
397  m_matU.applyOnTheRight(iu-1, iu, rot);
398  }
399 
400  if (iu > 1)
401  m_matT.coeffRef(iu-1, iu-2) = Scalar(0);
402 }
403 
405 template<typename MatrixType>
406 inline void RealSchur<MatrixType>::computeShift(Index iu, Index iter, Scalar& exshift, Vector3s& shiftInfo)
407 {
408  using std::sqrt;
409  using std::abs;
410  shiftInfo.coeffRef(0) = m_matT.coeff(iu,iu);
411  shiftInfo.coeffRef(1) = m_matT.coeff(iu-1,iu-1);
412  shiftInfo.coeffRef(2) = m_matT.coeff(iu,iu-1) * m_matT.coeff(iu-1,iu);
413 
414  // Wilkinson's original ad hoc shift
415  if (iter == 10)
416  {
417  exshift += shiftInfo.coeff(0);
418  for (Index i = 0; i <= iu; ++i)
419  m_matT.coeffRef(i,i) -= shiftInfo.coeff(0);
420  Scalar s = abs(m_matT.coeff(iu,iu-1)) + abs(m_matT.coeff(iu-1,iu-2));
421  shiftInfo.coeffRef(0) = Scalar(0.75) * s;
422  shiftInfo.coeffRef(1) = Scalar(0.75) * s;
423  shiftInfo.coeffRef(2) = Scalar(-0.4375) * s * s;
424  }
425 
426  // MATLAB's new ad hoc shift
427  if (iter == 30)
428  {
429  Scalar s = (shiftInfo.coeff(1) - shiftInfo.coeff(0)) / Scalar(2.0);
430  s = s * s + shiftInfo.coeff(2);
431  if (s > Scalar(0))
432  {
433  s = sqrt(s);
434  if (shiftInfo.coeff(1) < shiftInfo.coeff(0))
435  s = -s;
436  s = s + (shiftInfo.coeff(1) - shiftInfo.coeff(0)) / Scalar(2.0);
437  s = shiftInfo.coeff(0) - shiftInfo.coeff(2) / s;
438  exshift += s;
439  for (Index i = 0; i <= iu; ++i)
440  m_matT.coeffRef(i,i) -= s;
441  shiftInfo.setConstant(Scalar(0.964));
442  }
443  }
444 }
445 
447 template<typename MatrixType>
448 inline void RealSchur<MatrixType>::initFrancisQRStep(Index il, Index iu, const Vector3s& shiftInfo, Index& im, Vector3s& firstHouseholderVector)
449 {
450  using std::abs;
451  Vector3s& v = firstHouseholderVector; // alias to save typing
452 
453  for (im = iu-2; im >= il; --im)
454  {
455  const Scalar Tmm = m_matT.coeff(im,im);
456  const Scalar r = shiftInfo.coeff(0) - Tmm;
457  const Scalar s = shiftInfo.coeff(1) - Tmm;
458  v.coeffRef(0) = (r * s - shiftInfo.coeff(2)) / m_matT.coeff(im+1,im) + m_matT.coeff(im,im+1);
459  v.coeffRef(1) = m_matT.coeff(im+1,im+1) - Tmm - r - s;
460  v.coeffRef(2) = m_matT.coeff(im+2,im+1);
461  if (im == il) {
462  break;
463  }
464  const Scalar lhs = m_matT.coeff(im,im-1) * (abs(v.coeff(1)) + abs(v.coeff(2)));
465  const Scalar rhs = v.coeff(0) * (abs(m_matT.coeff(im-1,im-1)) + abs(Tmm) + abs(m_matT.coeff(im+1,im+1)));
466  if (abs(lhs) < NumTraits<Scalar>::epsilon() * rhs)
467  break;
468  }
469 }
470 
472 template<typename MatrixType>
473 inline void RealSchur<MatrixType>::performFrancisQRStep(Index il, Index im, Index iu, bool computeU, const Vector3s& firstHouseholderVector, Scalar* workspace)
474 {
475  eigen_assert(im >= il);
476  eigen_assert(im <= iu-2);
477 
478  const Index size = m_matT.cols();
479 
480  for (Index k = im; k <= iu-2; ++k)
481  {
482  bool firstIteration = (k == im);
483 
484  Vector3s v;
485  if (firstIteration)
486  v = firstHouseholderVector;
487  else
488  v = m_matT.template block<3,1>(k,k-1);
489 
490  Scalar tau, beta;
492  v.makeHouseholder(ess, tau, beta);
493 
494  if (beta != Scalar(0)) // if v is not zero
495  {
496  if (firstIteration && k > il)
497  m_matT.coeffRef(k,k-1) = -m_matT.coeff(k,k-1);
498  else if (!firstIteration)
499  m_matT.coeffRef(k,k-1) = beta;
500 
501  // These Householder transformations form the O(n^3) part of the algorithm
502  m_matT.block(k, k, 3, size-k).applyHouseholderOnTheLeft(ess, tau, workspace);
503  m_matT.block(0, k, (std::min)(iu,k+3) + 1, 3).applyHouseholderOnTheRight(ess, tau, workspace);
504  if (computeU)
505  m_matU.block(0, k, size, 3).applyHouseholderOnTheRight(ess, tau, workspace);
506  }
507  }
508 
509  Matrix<Scalar, 2, 1> v = m_matT.template block<2,1>(iu-1, iu-2);
510  Scalar tau, beta;
512  v.makeHouseholder(ess, tau, beta);
513 
514  if (beta != Scalar(0)) // if v is not zero
515  {
516  m_matT.coeffRef(iu-1, iu-2) = beta;
517  m_matT.block(iu-1, iu-1, 2, size-iu+1).applyHouseholderOnTheLeft(ess, tau, workspace);
518  m_matT.block(0, iu-1, iu+1, 2).applyHouseholderOnTheRight(ess, tau, workspace);
519  if (computeU)
520  m_matU.block(0, iu-1, size, 2).applyHouseholderOnTheRight(ess, tau, workspace);
521  }
522 
523  // clean up pollution due to round-off errors
524  for (Index i = im+2; i <= iu; ++i)
525  {
526  m_matT.coeffRef(i,i-2) = Scalar(0);
527  if (i > im+2)
528  m_matT.coeffRef(i,i-3) = Scalar(0);
529  }
530 }
531 
532 } // end namespace Eigen
533 
534 #endif // EIGEN_REAL_SCHUR_H
EIGEN_DEVICE_FUNC Index rows() const
Definition: EigenBase.h:58
Definition: RealSchur.h:54
void makeGivens(const Scalar &p, const Scalar &q, Scalar *z=0)
Makes *this as a Givens rotation G such that applying to the left of the vector yields: ...
Definition: Jacobi.h:149
RealSchur & computeFromHessenberg(const HessMatrixType &matrixH, const OrthMatrixType &matrixQ, bool computeU)
Computes Schur decomposition of a Hessenberg matrix H = Z T Z^T.
Namespace containing all symbols from the Eigen library.
Definition: bench_norm.cpp:85
Definition: ForwardDeclarations.h:263
Holds information about the various numeric (i.e.
Definition: NumTraits.h:150
RealSchur(Index size=RowsAtCompileTime==Dynamic ? 1 :RowsAtCompileTime)
Default constructor.
Definition: RealSchur.h:83
Index getMaxIterations()
Returns the maximum number of iterations.
Definition: RealSchur.h:213
Common base class for all classes T such that MatrixBase has an operator=(T) and a constructor Matrix...
Definition: EigenBase.h:28
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar & coeffRef(Index rowId, Index colId)
This is an overloaded version of DenseCoeffsBase<Derived,WriteAccessors>::coeffRef(Index,Index) const provided to by-pass the creation of an evaluator of the expression, thus saving compilation efforts.
Definition: PlainObjectBase.h:177
Eigen::Index Index
Definition: RealSchur.h:67
HessenbergDecomposition & compute(const EigenBase< InputType > &matrix)
Computes Hessenberg decomposition of given matrix.
Definition: HessenbergDecomposition.h:152
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void resize(Index rows, Index cols)
Resizes *this to a rows x cols matrix.
Definition: PlainObjectBase.h:273
MatrixHReturnType matrixH() const
Constructs the Hessenberg matrix H in the decomposition.
Definition: HessenbergDecomposition.h:262
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar & coeff(Index rowId, Index colId) const
This is an overloaded version of DenseCoeffsBase<Derived,ReadOnlyAccessors>::coeff(Index,Index) const provided to by-pass the creation of an evaluator of the expression, thus saving compilation efforts.
Definition: PlainObjectBase.h:154
EIGEN_DEFAULT_DENSE_INDEX_TYPE Index
The Index type as used for the API.
Definition: Meta.h:33
static const int m_maxIterationsPerRow
Maximum number of iterations per row.
Definition: RealSchur.h:223
RealSchur & compute(const EigenBase< InputType > &matrix, bool computeU=true)
Computes Schur decomposition of given matrix.
const MatrixType & matrixT() const
Returns the quasi-triangular matrix in the Schur decomposition.
Definition: RealSchur.h:144
Computation was successful.
Definition: Constants.h:432
EIGEN_DEVICE_FUNC Derived & setConstant(Index size, const Scalar &val)
Resizes to the given size, and sets all coefficients in this expression to the given value val...
Definition: CwiseNullaryOp.h:341
const MatrixType & matrixU() const
Returns the orthogonal matrix in the Schur decomposition.
Definition: RealSchur.h:127
RealSchur & setMaxIterations(Index maxIters)
Sets the maximum number of iterations allowed.
Definition: RealSchur.h:206
EIGEN_DEVICE_FUNC Index cols() const
Definition: EigenBase.h:61
HouseholderSequenceType matrixQ() const
Reconstructs the orthogonal matrix Q in the decomposition.
Definition: HessenbergDecomposition.h:234
const int Dynamic
This value means that a positive quantity (e.g., a size) is not known at compile-time, and that instead the value is stored in some runtime variable.
Definition: Constants.h:21
ComputationInfo info() const
Reports whether previous computation was successful.
Definition: RealSchur.h:195
RealSchur(const EigenBase< InputType > &matrix, bool computeU=true)
Constructor; computes real Schur decomposition of given matrix.
Definition: RealSchur.h:104
ComputationInfo
Enum for reporting the status of a computation.
Definition: Constants.h:430
EIGEN_DEVICE_FUNC Derived & derived()
Definition: EigenBase.h:44
Iterative procedure did not converge.
Definition: Constants.h:436
JacobiRotation adjoint() const
Returns the adjoint transformation.
Definition: Jacobi.h:62