10 #ifndef EIGEN_SELFADJOINT_MATRIX_VECTOR_H 11 #define EIGEN_SELFADJOINT_MATRIX_VECTOR_H 23 template<
typename Scalar,
typename Index,
int StorageOrder,
int UpLo,
bool ConjugateLhs,
bool ConjugateRhs,
int Version=Specialized>
26 template<
typename Scalar,
typename Index,
int StorageOrder,
int UpLo,
bool ConjugateLhs,
bool ConjugateRhs,
int Version>
30 static EIGEN_DONT_INLINE
void run(
32 const Scalar* lhs,
Index lhsStride,
38 template<
typename Scalar,
typename Index,
int StorageOrder,
int UpLo,
bool ConjugateLhs,
bool ConjugateRhs,
int Version>
41 const Scalar* lhs,
Index lhsStride,
48 const Index PacketSize =
sizeof(Packet)/
sizeof(Scalar);
51 IsRowMajor = StorageOrder==
RowMajor ? 1 : 0,
52 IsLower = UpLo ==
Lower ? 1 : 0,
53 FirstTriangular = IsRowMajor == IsLower
63 Scalar cjAlpha = ConjugateRhs ? numext::conj(alpha) : alpha;
66 Index bound = (std::max)(
Index(0),size-8) & 0xfffffffe;
70 for (
Index j=FirstTriangular ? bound : 0;
71 j<(FirstTriangular ? size : bound);j+=2)
73 const Scalar* EIGEN_RESTRICT A0 = lhs + j*lhsStride;
74 const Scalar* EIGEN_RESTRICT A1 = lhs + (j+1)*lhsStride;
76 Scalar t0 = cjAlpha * rhs[j];
77 Packet ptmp0 = pset1<Packet>(t0);
78 Scalar t1 = cjAlpha * rhs[j+1];
79 Packet ptmp1 = pset1<Packet>(t1);
82 Packet ptmp2 = pset1<Packet>(t2);
84 Packet ptmp3 = pset1<Packet>(t3);
86 size_t starti = FirstTriangular ? 0 : j+2;
87 size_t endi = FirstTriangular ? j : size;
88 size_t alignedStart = (starti) + internal::first_default_aligned(&res[starti], endi-starti);
89 size_t alignedEnd = alignedStart + ((endi-alignedStart)/(PacketSize))*(PacketSize);
91 res[j] += cjd.pmul(numext::real(A0[j]), t0);
92 res[j+1] += cjd.pmul(numext::real(A1[j+1]), t1);
95 res[j] += cj0.pmul(A1[j], t1);
96 t3 += cj1.pmul(A1[j], rhs[j]);
100 res[j+1] += cj0.pmul(A0[j+1],t0);
101 t2 += cj1.pmul(A0[j+1], rhs[j+1]);
104 for (
size_t i=starti; i<alignedStart; ++i)
106 res[i] += cj0.pmul(A0[i], t0) + cj0.pmul(A1[i],t1);
107 t2 += cj1.pmul(A0[i], rhs[i]);
108 t3 += cj1.pmul(A1[i], rhs[i]);
112 const Scalar* EIGEN_RESTRICT a0It = A0 + alignedStart;
113 const Scalar* EIGEN_RESTRICT a1It = A1 + alignedStart;
114 const Scalar* EIGEN_RESTRICT rhsIt = rhs + alignedStart;
115 Scalar* EIGEN_RESTRICT resIt = res + alignedStart;
116 for (
size_t i=alignedStart; i<alignedEnd; i+=PacketSize)
118 Packet A0i = ploadu<Packet>(a0It); a0It += PacketSize;
119 Packet A1i = ploadu<Packet>(a1It); a1It += PacketSize;
120 Packet Bi = ploadu<Packet>(rhsIt); rhsIt += PacketSize;
121 Packet Xi = pload <Packet>(resIt);
123 Xi = pcj0.pmadd(A0i,ptmp0, pcj0.pmadd(A1i,ptmp1,Xi));
124 ptmp2 = pcj1.pmadd(A0i, Bi, ptmp2);
125 ptmp3 = pcj1.pmadd(A1i, Bi, ptmp3);
126 pstore(resIt,Xi); resIt += PacketSize;
128 for (
size_t i=alignedEnd; i<endi; i++)
130 res[i] += cj0.pmul(A0[i], t0) + cj0.pmul(A1[i],t1);
131 t2 += cj1.pmul(A0[i], rhs[i]);
132 t3 += cj1.pmul(A1[i], rhs[i]);
135 res[j] += alpha * (t2 + predux(ptmp2));
136 res[j+1] += alpha * (t3 + predux(ptmp3));
138 for (
Index j=FirstTriangular ? 0 : bound;j<(FirstTriangular ? bound : size);j++)
140 const Scalar* EIGEN_RESTRICT A0 = lhs + j*lhsStride;
142 Scalar t1 = cjAlpha * rhs[j];
144 res[j] += cjd.pmul(numext::real(A0[j]), t1);
145 for (
Index i=FirstTriangular ? 0 : j+1; i<(FirstTriangular ? j : size); i++)
147 res[i] += cj0.pmul(A0[i], t1);
148 t2 += cj1.pmul(A0[i], rhs[i]);
150 res[j] += alpha * t2;
162 template<
typename Lhs,
int LhsMode,
typename Rhs>
177 template<
typename Dest>
178 static void run(Dest& dest,
const Lhs &a_lhs,
const Rhs &a_rhs,
const Scalar& alpha)
180 typedef typename Dest::Scalar ResScalar;
181 typedef typename Rhs::Scalar RhsScalar;
184 eigen_assert(dest.rows()==a_lhs.rows() && dest.cols()==a_rhs.cols());
189 Scalar actualAlpha = alpha * LhsBlasTraits::extractScalarFactor(a_lhs)
190 * RhsBlasTraits::extractScalarFactor(a_rhs);
193 EvalToDest = (Dest::InnerStrideAtCompileTime==1),
194 UseRhs = (ActualRhsTypeCleaned::InnerStrideAtCompileTime==1)
200 ei_declare_aligned_stack_constructed_variable(ResScalar,actualDestPtr,dest.size(),
201 EvalToDest ? dest.data() : static_dest.data());
203 ei_declare_aligned_stack_constructed_variable(RhsScalar,actualRhsPtr,rhs.size(),
204 UseRhs ?
const_cast<RhsScalar*
>(rhs.data()) : static_rhs.data());
208 #ifdef EIGEN_DENSE_STORAGE_CTOR_PLUGIN 209 Index size = dest.size();
210 EIGEN_DENSE_STORAGE_CTOR_PLUGIN
212 MappedDest(actualDestPtr, dest.size()) = dest;
217 #ifdef EIGEN_DENSE_STORAGE_CTOR_PLUGIN 218 Index size = rhs.size();
219 EIGEN_DENSE_STORAGE_CTOR_PLUGIN
226 int(LhsUpLo), bool(LhsBlasTraits::NeedToConjugate), bool(RhsBlasTraits::NeedToConjugate)>::run
229 &lhs.coeffRef(0,0), lhs.outerStride(),
236 dest = MappedDest(actualDestPtr, dest.size());
240 template<
typename Lhs,
typename Rhs,
int RhsMode>
246 template<
typename Dest>
247 static void run(Dest& dest,
const Lhs &a_lhs,
const Rhs &a_rhs,
const Scalar& alpha)
260 #endif // EIGEN_SELFADJOINT_MATRIX_VECTOR_H Definition: BlasUtil.h:269
Storage order is column major (see TopicStorageOrders).
Definition: Constants.h:320
Expression of the product of two arbitrary matrices or vectors.
Definition: Product.h:71
Definition: BlasUtil.h:61
A matrix or vector expression mapping an existing array of data.
Definition: Map.h:88
Expression of the transpose of a matrix.
Definition: Transpose.h:52
Namespace containing all symbols from the Eigen library.
Definition: bench_norm.cpp:85
Holds information about the various numeric (i.e.
Definition: NumTraits.h:150
const unsigned int RowMajorBit
for a matrix, this means that the storage order is row-major.
Definition: Constants.h:61
Definition: GenericPacketMath.h:96
View matrix as a lower triangular matrix.
Definition: Constants.h:204
EIGEN_DEFAULT_DENSE_INDEX_TYPE Index
The Index type as used for the API.
Definition: Meta.h:33
Definition: GeneralProduct.h:146
View matrix as an upper triangular matrix.
Definition: Constants.h:206
Definition: PacketMath.h:48
Definition: BandTriangularSolver.h:13
Storage order is row major (see TopicStorageOrders).
Definition: Constants.h:322
Definition: SelfadjointMatrixVector.h:24
Definition: ProductEvaluators.h:736
Generic expression where a coefficient-wise unary operator is applied to an expression.
Definition: CwiseUnaryOp.h:55