10 #ifndef EIGEN_CXX11_TENSOR_TENSOR_BROADCASTING_H 11 #define EIGEN_CXX11_TENSOR_TENSOR_BROADCASTING_H 23 template<
typename Broadcast,
typename XprType>
26 typedef typename XprType::Scalar Scalar;
28 typedef typename XprTraits::StorageKind StorageKind;
29 typedef typename XprTraits::Index
Index;
30 typedef typename XprType::Nested Nested;
32 static const int NumDimensions = XprTraits::NumDimensions;
33 static const int Layout = XprTraits::Layout;
36 template<
typename Broadcast,
typename XprType>
42 template<
typename Broadcast,
typename XprType>
48 template <
typename Dims>
50 static const bool value =
false;
54 static const bool value =
true;
56 #ifndef EIGEN_EMULATE_CXX11_META_H 57 template <
typename std::size_t... Indices>
59 static const bool value = (
Sizes<Indices...>::total_size == 1);
67 template<
typename Broadcast,
typename XprType>
73 typedef typename XprType::CoeffReturnType CoeffReturnType;
78 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
TensorBroadcastingOp(
const XprType& expr,
const Broadcast& broadcast)
79 : m_xpr(expr), m_broadcast(broadcast) {}
82 const Broadcast& broadcast()
const {
return m_broadcast; }
86 expression()
const {
return m_xpr; }
89 typename XprType::Nested m_xpr;
90 const Broadcast m_broadcast;
95 template<
typename Broadcast,
typename ArgType,
typename Device>
99 typedef typename XprType::Index
Index;
102 typedef typename XprType::Scalar Scalar;
104 typedef typename XprType::CoeffReturnType CoeffReturnType;
115 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
TensorEvaluator(
const XprType& op,
const Device& device)
116 : m_broadcast(op.broadcast()),m_impl(op.expression(), device)
121 EIGEN_STATIC_ASSERT((NumDims > 0), YOU_MADE_A_PROGRAMMING_MISTAKE);
122 const InputDimensions& input_dims = m_impl.dimensions();
123 const Broadcast& broadcast = op.broadcast();
124 for (
int i = 0; i < NumDims; ++i) {
125 eigen_assert(input_dims[i] > 0);
126 m_dimensions[i] = input_dims[i] * broadcast[i];
129 if (static_cast<int>(Layout) == static_cast<int>(
ColMajor)) {
130 m_inputStrides[0] = 1;
131 m_outputStrides[0] = 1;
132 for (
int i = 1; i < NumDims; ++i) {
133 m_inputStrides[i] = m_inputStrides[i-1] * input_dims[i-1];
134 m_outputStrides[i] = m_outputStrides[i-1] * m_dimensions[i-1];
137 m_inputStrides[NumDims-1] = 1;
138 m_outputStrides[NumDims-1] = 1;
139 for (
int i = NumDims-2; i >= 0; --i) {
140 m_inputStrides[i] = m_inputStrides[i+1] * input_dims[i+1];
141 m_outputStrides[i] = m_outputStrides[i+1] * m_dimensions[i+1];
146 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
const Dimensions& dimensions()
const {
return m_dimensions; }
148 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
bool evalSubExprsIfNeeded(Scalar* ) {
149 m_impl.evalSubExprsIfNeeded(NULL);
153 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
void cleanup() {
157 EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE CoeffReturnType coeff(Index index)
const 160 return m_impl.coeff(0);
163 if (static_cast<int>(Layout) == static_cast<int>(
ColMajor)) {
164 return coeffColMajor(index);
166 return coeffRowMajor(index);
171 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeffColMajor(Index index)
const 173 Index inputIndex = 0;
174 for (
int i = NumDims - 1; i > 0; --i) {
175 const Index idx = index / m_outputStrides[i];
176 if (internal::index_statically_eq<Broadcast>(i, 1)) {
177 eigen_assert(idx < m_impl.dimensions()[i]);
178 inputIndex += idx * m_inputStrides[i];
180 if (internal::index_statically_eq<InputDimensions>(i, 1)) {
181 eigen_assert(idx % m_impl.dimensions()[i] == 0);
183 inputIndex += (idx % m_impl.dimensions()[i]) * m_inputStrides[i];
186 index -= idx * m_outputStrides[i];
188 if (internal::index_statically_eq<Broadcast>(0, 1)) {
189 eigen_assert(index < m_impl.dimensions()[0]);
192 if (internal::index_statically_eq<InputDimensions>(0, 1)) {
193 eigen_assert(index % m_impl.dimensions()[0] == 0);
195 inputIndex += (index % m_impl.dimensions()[0]);
198 return m_impl.coeff(inputIndex);
201 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeffRowMajor(Index index)
const 203 Index inputIndex = 0;
204 for (
int i = 0; i < NumDims - 1; ++i) {
205 const Index idx = index / m_outputStrides[i];
206 if (internal::index_statically_eq<Broadcast>(i, 1)) {
207 eigen_assert(idx < m_impl.dimensions()[i]);
208 inputIndex += idx * m_inputStrides[i];
210 if (internal::index_statically_eq<InputDimensions>(i, 1)) {
211 eigen_assert(idx % m_impl.dimensions()[i] == 0);
213 inputIndex += (idx % m_impl.dimensions()[i]) * m_inputStrides[i];
216 index -= idx * m_outputStrides[i];
218 if (internal::index_statically_eq<Broadcast>(NumDims-1, 1)) {
219 eigen_assert(index < m_impl.dimensions()[NumDims-1]);
222 if (internal::index_statically_eq<InputDimensions>(NumDims-1, 1)) {
223 eigen_assert(index % m_impl.dimensions()[NumDims-1] == 0);
225 inputIndex += (index % m_impl.dimensions()[NumDims-1]);
228 return m_impl.coeff(inputIndex);
231 template<
int LoadMode>
232 EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE PacketReturnType packet(Index index)
const 235 return internal::pset1<PacketReturnType>(m_impl.coeff(0));
238 if (static_cast<int>(Layout) ==
static_cast<int>(
ColMajor)) {
239 return packetColMajor<LoadMode>(index);
241 return packetRowMajor<LoadMode>(index);
247 template<
int LoadMode>
248 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packetColMajor(Index index)
const 250 EIGEN_STATIC_ASSERT((PacketSize > 1), YOU_MADE_A_PROGRAMMING_MISTAKE)
251 eigen_assert(index+PacketSize-1 < dimensions().TotalSize());
253 const Index originalIndex = index;
255 Index inputIndex = 0;
256 for (
int i = NumDims - 1; i > 0; --i) {
257 const Index idx = index / m_outputStrides[i];
258 if (internal::index_statically_eq<Broadcast>(i, 1)) {
259 eigen_assert(idx < m_impl.dimensions()[i]);
260 inputIndex += idx * m_inputStrides[i];
262 if (internal::index_statically_eq<InputDimensions>(i, 1)) {
263 eigen_assert(idx % m_impl.dimensions()[i] == 0);
265 inputIndex += (idx % m_impl.dimensions()[i]) * m_inputStrides[i];
268 index -= idx * m_outputStrides[i];
271 if (internal::index_statically_eq<Broadcast>(0, 1)) {
272 eigen_assert(index < m_impl.dimensions()[0]);
273 innermostLoc = index;
275 if (internal::index_statically_eq<InputDimensions>(0, 1)) {
276 eigen_assert(index % m_impl.dimensions()[0] == 0);
279 innermostLoc = index % m_impl.dimensions()[0];
282 inputIndex += innermostLoc;
286 if (innermostLoc + PacketSize <= m_impl.dimensions()[0]) {
287 return m_impl.template packet<Unaligned>(inputIndex);
290 values[0] = m_impl.coeff(inputIndex);
291 for (
int i = 1; i < PacketSize; ++i) {
292 values[i] = coeffColMajor(originalIndex+i);
294 PacketReturnType rslt = internal::pload<PacketReturnType>(values);
299 template<
int LoadMode>
300 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packetRowMajor(Index index)
const 302 EIGEN_STATIC_ASSERT((PacketSize > 1), YOU_MADE_A_PROGRAMMING_MISTAKE)
303 eigen_assert(index+PacketSize-1 < dimensions().TotalSize());
305 const Index originalIndex = index;
307 Index inputIndex = 0;
308 for (
int i = 0; i < NumDims - 1; ++i) {
309 const Index idx = index / m_outputStrides[i];
310 if (internal::index_statically_eq<Broadcast>(i, 1)) {
311 eigen_assert(idx < m_impl.dimensions()[i]);
312 inputIndex += idx * m_inputStrides[i];
314 if (internal::index_statically_eq<InputDimensions>(i, 1)) {
315 eigen_assert(idx % m_impl.dimensions()[i] == 0);
317 inputIndex += (idx % m_impl.dimensions()[i]) * m_inputStrides[i];
320 index -= idx * m_outputStrides[i];
323 if (internal::index_statically_eq<Broadcast>(NumDims-1, 1)) {
324 eigen_assert(index < m_impl.dimensions()[NumDims-1]);
325 innermostLoc = index;
327 if (internal::index_statically_eq<InputDimensions>(NumDims-1, 1)) {
328 eigen_assert(index % m_impl.dimensions()[NumDims-1] == 0);
331 innermostLoc = index % m_impl.dimensions()[NumDims-1];
334 inputIndex += innermostLoc;
338 if (innermostLoc + PacketSize <= m_impl.dimensions()[NumDims-1]) {
339 return m_impl.template packet<Unaligned>(inputIndex);
342 values[0] = m_impl.coeff(inputIndex);
343 for (
int i = 1; i < PacketSize; ++i) {
344 values[i] = coeffRowMajor(originalIndex+i);
346 PacketReturnType rslt = internal::pload<PacketReturnType>(values);
352 costPerCoeff(
bool vectorized)
const {
353 double compute_cost = TensorOpCost::AddCost<Index>();
355 for (
int i = NumDims - 1; i > 0; --i) {
356 compute_cost += TensorOpCost::DivCost<Index>();
357 if (internal::index_statically_eq<Broadcast>(i, 1)) {
359 TensorOpCost::MulCost<Index>() + TensorOpCost::AddCost<Index>();
361 if (!internal::index_statically_eq<InputDimensions>(i, 1)) {
362 compute_cost += TensorOpCost::MulCost<Index>() +
363 TensorOpCost::ModCost<Index>() +
364 TensorOpCost::AddCost<Index>();
368 TensorOpCost::MulCost<Index>() + TensorOpCost::AddCost<Index>();
371 return m_impl.costPerCoeff(vectorized) +
372 TensorOpCost(0, 0, compute_cost, vectorized, PacketSize);
375 EIGEN_DEVICE_FUNC Scalar* data()
const {
return NULL; }
379 Broadcast functor()
const {
return m_broadcast; }
382 const Broadcast m_broadcast;
383 Dimensions m_dimensions;
392 #endif // EIGEN_CXX11_TENSOR_TENSOR_BROADCASTING_H Definition: TensorCostModel.h:25
Storage order is column major (see TopicStorageOrders).
Definition: Constants.h:320
Definition: XprHelper.h:158
Namespace containing all symbols from the Eigen library.
Definition: bench_norm.cpp:85
A cost model used to limit the number of threads used for evaluating tensor expression.
Definition: TensorEvaluator.h:28
Definition: TensorDimensions.h:93
EIGEN_DEFAULT_DENSE_INDEX_TYPE Index
The Index type as used for the API.
Definition: Meta.h:33
Definition: TensorBroadcasting.h:68
The tensor base class.
Definition: TensorBase.h:827
Definition: BandTriangularSolver.h:13
Definition: TensorTraits.h:170
The type used to identify a dense storage.
Definition: Constants.h:491
Generic expression where a coefficient-wise unary operator is applied to an expression.
Definition: CwiseUnaryOp.h:55
Definition: ForwardDeclarations.h:17
Definition: XprHelper.h:312
Definition: EmulateArray.h:203