11 #ifndef EIGEN_CXX11_TENSOR_TENSOR_REVERSE_H 12 #define EIGEN_CXX11_TENSOR_TENSOR_REVERSE_H 22 template<
typename ReverseDimensions,
typename XprType>
24 XprType> > :
public traits<XprType>
26 typedef typename XprType::Scalar Scalar;
28 typedef typename XprTraits::StorageKind StorageKind;
29 typedef typename XprTraits::Index
Index;
30 typedef typename XprType::Nested Nested;
32 static const int NumDimensions = XprTraits::NumDimensions;
33 static const int Layout = XprTraits::Layout;
36 template<
typename ReverseDimensions,
typename XprType>
42 template<
typename ReverseDimensions,
typename XprType>
51 template<
typename ReverseDimensions,
typename XprType>
53 XprType>, WriteAccessors>
58 typedef typename XprType::CoeffReturnType CoeffReturnType;
65 const XprType& expr,
const ReverseDimensions& reverse_dims)
66 : m_xpr(expr), m_reverse_dims(reverse_dims) { }
69 const ReverseDimensions& reverse()
const {
return m_reverse_dims; }
73 expression()
const {
return m_xpr; }
76 EIGEN_STRONG_INLINE TensorReverseOp& operator = (
const TensorReverseOp& other)
79 Assign assign(*
this, other);
84 template<
typename OtherDerived>
86 EIGEN_STRONG_INLINE TensorReverseOp& operator = (
const OtherDerived& other)
89 Assign assign(*
this, other);
95 typename XprType::Nested m_xpr;
96 const ReverseDimensions m_reverse_dims;
100 template<
typename ReverseDimensions,
typename ArgType,
typename Device>
104 typedef typename XprType::Index
Index;
107 typedef typename XprType::Scalar Scalar;
108 typedef typename XprType::CoeffReturnType CoeffReturnType;
120 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
TensorEvaluator(
const XprType& op,
121 const Device& device)
122 : m_impl(op.expression(), device), m_reverse(op.reverse())
125 EIGEN_STATIC_ASSERT((NumDims > 0), YOU_MADE_A_PROGRAMMING_MISTAKE);
128 m_dimensions = m_impl.dimensions();
129 if (static_cast<int>(Layout) == static_cast<int>(
ColMajor)) {
131 for (
int i = 1; i < NumDims; ++i) {
132 m_strides[i] = m_strides[i-1] * m_dimensions[i-1];
135 m_strides[NumDims-1] = 1;
136 for (
int i = NumDims - 2; i >= 0; --i) {
137 m_strides[i] = m_strides[i+1] * m_dimensions[i+1];
142 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
143 const Dimensions& dimensions()
const {
return m_dimensions; }
145 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
bool evalSubExprsIfNeeded(Scalar*) {
146 m_impl.evalSubExprsIfNeeded(NULL);
149 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
void cleanup() {
153 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index reverseIndex(
155 eigen_assert(index < dimensions().TotalSize());
156 Index inputIndex = 0;
157 if (static_cast<int>(Layout) == static_cast<int>(
ColMajor)) {
158 for (
int i = NumDims - 1; i > 0; --i) {
159 Index idx = index / m_strides[i];
160 index -= idx * m_strides[i];
162 idx = m_dimensions[i] - idx - 1;
164 inputIndex += idx * m_strides[i] ;
167 inputIndex += (m_dimensions[0] - index - 1);
172 for (
int i = 0; i < NumDims - 1; ++i) {
173 Index idx = index / m_strides[i];
174 index -= idx * m_strides[i];
176 idx = m_dimensions[i] - idx - 1;
178 inputIndex += idx * m_strides[i] ;
180 if (m_reverse[NumDims-1]) {
181 inputIndex += (m_dimensions[NumDims-1] - index - 1);
189 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(
191 return m_impl.coeff(reverseIndex(index));
194 template<
int LoadMode>
195 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
196 PacketReturnType packet(Index index)
const 198 EIGEN_STATIC_ASSERT((PacketSize > 1), YOU_MADE_A_PROGRAMMING_MISTAKE)
199 eigen_assert(index+PacketSize-1 < dimensions().TotalSize());
205 for (
int i = 0; i < PacketSize; ++i) {
206 values[i] = coeff(index+i);
208 PacketReturnType rslt = internal::pload<PacketReturnType>(values);
212 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
TensorOpCost costPerCoeff(
bool vectorized)
const {
213 double compute_cost = NumDims * (2 * TensorOpCost::AddCost<Index>() +
214 2 * TensorOpCost::MulCost<Index>() +
215 TensorOpCost::DivCost<Index>());
216 for (
int i = 0; i < NumDims; ++i) {
218 compute_cost += 2 * TensorOpCost::AddCost<Index>();
221 return m_impl.costPerCoeff(vectorized) +
225 EIGEN_DEVICE_FUNC Scalar* data()
const {
return NULL; }
228 Dimensions m_dimensions;
231 ReverseDimensions m_reverse;
236 template <
typename ReverseDimensions,
typename ArgType,
typename Device>
238 :
public TensorEvaluator<const TensorReverseOp<ReverseDimensions, ArgType>,
243 typedef typename XprType::Index
Index;
254 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
TensorEvaluator(
const XprType& op,
255 const Device& device)
256 : Base(op, device) {}
258 typedef typename XprType::Scalar Scalar;
259 typedef typename XprType::CoeffReturnType CoeffReturnType;
263 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
264 const Dimensions& dimensions()
const {
return this->m_dimensions; }
266 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar& coeffRef(Index index) {
267 return this->m_impl.coeffRef(this->reverseIndex(index));
270 template <
int StoreMode> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
271 void writePacket(Index index,
const PacketReturnType& x) {
272 EIGEN_STATIC_ASSERT((PacketSize > 1), YOU_MADE_A_PROGRAMMING_MISTAKE)
273 eigen_assert(index+PacketSize-1 < dimensions().TotalSize());
276 EIGEN_ALIGN_MAX CoeffReturnType values[PacketSize];
277 internal::pstore<CoeffReturnType, PacketReturnType>(values, x);
278 for (
int i = 0; i < PacketSize; ++i) {
279 this->coeffRef(index+i) = values[i];
288 #endif // EIGEN_CXX11_TENSOR_TENSOR_REVERSE_H Definition: TensorExecutor.h:27
Definition: TensorCostModel.h:25
Storage order is column major (see TopicStorageOrders).
Definition: Constants.h:320
Definition: TensorReverse.h:101
Definition: XprHelper.h:158
Namespace containing all symbols from the Eigen library.
Definition: bench_norm.cpp:85
A cost model used to limit the number of threads used for evaluating tensor expression.
Definition: TensorEvaluator.h:28
Definition: TensorAssign.h:60
Definition: TensorForwardDeclarations.h:52
EIGEN_DEFAULT_DENSE_INDEX_TYPE Index
The Index type as used for the API.
Definition: Meta.h:33
Definition: TensorDeviceDefault.h:17
The tensor base class.
Definition: TensorBase.h:827
Definition: BandTriangularSolver.h:13
Definition: TensorTraits.h:170
The type used to identify a dense storage.
Definition: Constants.h:491
Generic expression where a coefficient-wise unary operator is applied to an expression.
Definition: CwiseUnaryOp.h:55
Definition: ForwardDeclarations.h:17
Definition: XprHelper.h:312
Definition: EmulateArray.h:203