compbio
TensorShuffling.h
1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com>
5 //
6 // This Source Code Form is subject to the terms of the Mozilla
7 // Public License v. 2.0. If a copy of the MPL was not distributed
8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9 
10 #ifndef EIGEN_CXX11_TENSOR_TENSOR_SHUFFLING_H
11 #define EIGEN_CXX11_TENSOR_TENSOR_SHUFFLING_H
12 
13 namespace Eigen {
14 
22 namespace internal {
23 template<typename Shuffle, typename XprType>
24 struct traits<TensorShufflingOp<Shuffle, XprType> > : public traits<XprType>
25 {
26  typedef typename XprType::Scalar Scalar;
27  typedef traits<XprType> XprTraits;
28  typedef typename XprTraits::StorageKind StorageKind;
29  typedef typename XprTraits::Index Index;
30  typedef typename XprType::Nested Nested;
31  typedef typename remove_reference<Nested>::type _Nested;
32  static const int NumDimensions = XprTraits::NumDimensions;
33  static const int Layout = XprTraits::Layout;
34 };
35 
36 template<typename Shuffle, typename XprType>
37 struct eval<TensorShufflingOp<Shuffle, XprType>, Eigen::Dense>
38 {
40 };
41 
42 template<typename Shuffle, typename XprType>
43 struct nested<TensorShufflingOp<Shuffle, XprType>, 1, typename eval<TensorShufflingOp<Shuffle, XprType> >::type>
44 {
46 };
47 
48 } // end namespace internal
49 
50 
51 
52 template<typename Shuffle, typename XprType>
53 class TensorShufflingOp : public TensorBase<TensorShufflingOp<Shuffle, XprType> >
54 {
55  public:
57  typedef typename Eigen::NumTraits<Scalar>::Real RealScalar;
58  typedef typename XprType::CoeffReturnType CoeffReturnType;
62 
63  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorShufflingOp(const XprType& expr, const Shuffle& shuffle)
64  : m_xpr(expr), m_shuffle(shuffle) {}
65 
66  EIGEN_DEVICE_FUNC
67  const Shuffle& shufflePermutation() const { return m_shuffle; }
68 
69  EIGEN_DEVICE_FUNC
71  expression() const { return m_xpr; }
72 
73  EIGEN_DEVICE_FUNC
74  EIGEN_STRONG_INLINE TensorShufflingOp& operator = (const TensorShufflingOp& other)
75  {
77  Assign assign(*this, other);
79  return *this;
80  }
81 
82  template<typename OtherDerived>
83  EIGEN_DEVICE_FUNC
84  EIGEN_STRONG_INLINE TensorShufflingOp& operator = (const OtherDerived& other)
85  {
87  Assign assign(*this, other);
89  return *this;
90  }
91 
92  protected:
93  typename XprType::Nested m_xpr;
94  const Shuffle m_shuffle;
95 };
96 
97 
98 // Eval as rvalue
99 template<typename Shuffle, typename ArgType, typename Device>
100 struct TensorEvaluator<const TensorShufflingOp<Shuffle, ArgType>, Device>
101 {
103  typedef typename XprType::Index Index;
106  typedef typename XprType::Scalar Scalar;
107  typedef typename XprType::CoeffReturnType CoeffReturnType;
109  static const int PacketSize = internal::unpacket_traits<PacketReturnType>::size;
110 
111  enum {
112  IsAligned = false,
113  PacketAccess = (internal::packet_traits<Scalar>::size > 1),
115  CoordAccess = false, // to be implemented
116  RawAccess = false
117  };
118 
119  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device)
120  : m_impl(op.expression(), device)
121  {
122  const typename TensorEvaluator<ArgType, Device>::Dimensions& input_dims = m_impl.dimensions();
123  const Shuffle& shuffle = op.shufflePermutation();
124  for (int i = 0; i < NumDims; ++i) {
125  m_dimensions[i] = input_dims[shuffle[i]];
126  }
127 
128  array<Index, NumDims> inputStrides;
129 
130  if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
131  inputStrides[0] = 1;
132  m_outputStrides[0] = 1;
133  for (int i = 1; i < NumDims; ++i) {
134  inputStrides[i] = inputStrides[i - 1] * input_dims[i - 1];
135  m_outputStrides[i] = m_outputStrides[i - 1] * m_dimensions[i - 1];
136  }
137  } else {
138  inputStrides[NumDims - 1] = 1;
139  m_outputStrides[NumDims - 1] = 1;
140  for (int i = NumDims - 2; i >= 0; --i) {
141  inputStrides[i] = inputStrides[i + 1] * input_dims[i + 1];
142  m_outputStrides[i] = m_outputStrides[i + 1] * m_dimensions[i + 1];
143  }
144  }
145 
146  for (int i = 0; i < NumDims; ++i) {
147  m_inputStrides[i] = inputStrides[shuffle[i]];
148  }
149  }
150 
151  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions& dimensions() const { return m_dimensions; }
152 
153  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(Scalar* /*data*/) {
154  m_impl.evalSubExprsIfNeeded(NULL);
155  return true;
156  }
157  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void cleanup() {
158  m_impl.cleanup();
159  }
160 
161  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const
162  {
163  return m_impl.coeff(srcCoeff(index));
164  }
165 
166  template<int LoadMode>
167  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packet(Index index) const
168  {
169  EIGEN_STATIC_ASSERT((PacketSize > 1), YOU_MADE_A_PROGRAMMING_MISTAKE)
170  eigen_assert(index+PacketSize-1 < dimensions().TotalSize());
171 
172  EIGEN_ALIGN_MAX typename internal::remove_const<CoeffReturnType>::type values[PacketSize];
173  for (int i = 0; i < PacketSize; ++i) {
174  values[i] = coeff(index+i);
175  }
176  PacketReturnType rslt = internal::pload<PacketReturnType>(values);
177  return rslt;
178  }
179 
180  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost costPerCoeff(bool vectorized) const {
181  const double compute_cost = NumDims * (2 * TensorOpCost::AddCost<Index>() +
182  2 * TensorOpCost::MulCost<Index>() +
183  TensorOpCost::DivCost<Index>());
184  return m_impl.costPerCoeff(vectorized) +
185  TensorOpCost(0, 0, compute_cost, false /* vectorized */, PacketSize);
186  }
187 
188  EIGEN_DEVICE_FUNC Scalar* data() const { return NULL; }
189 
190  protected:
191  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index srcCoeff(Index index) const {
192  Index inputIndex = 0;
193  if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
194  for (int i = NumDims - 1; i > 0; --i) {
195  const Index idx = index / m_outputStrides[i];
196  inputIndex += idx * m_inputStrides[i];
197  index -= idx * m_outputStrides[i];
198  }
199  return inputIndex + index * m_inputStrides[0];
200  } else {
201  for (int i = 0; i < NumDims - 1; ++i) {
202  const Index idx = index / m_outputStrides[i];
203  inputIndex += idx * m_inputStrides[i];
204  index -= idx * m_outputStrides[i];
205  }
206  return inputIndex + index * m_inputStrides[NumDims - 1];
207  }
208  }
209 
210  Dimensions m_dimensions;
211  array<Index, NumDims> m_outputStrides;
212  array<Index, NumDims> m_inputStrides;
214 };
215 
216 
217 // Eval as lvalue
218 template<typename Shuffle, typename ArgType, typename Device>
219 struct TensorEvaluator<TensorShufflingOp<Shuffle, ArgType>, Device>
220  : public TensorEvaluator<const TensorShufflingOp<Shuffle, ArgType>, Device>
221 {
223 
225  typedef typename XprType::Index Index;
228  typedef typename XprType::Scalar Scalar;
229  typedef typename XprType::CoeffReturnType CoeffReturnType;
231  static const int PacketSize = internal::unpacket_traits<PacketReturnType>::size;
232 
233  enum {
234  IsAligned = false,
235  PacketAccess = (internal::packet_traits<Scalar>::size > 1),
236  RawAccess = false
237  };
238 
239  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device)
240  : Base(op, device)
241  { }
242 
243  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType& coeffRef(Index index)
244  {
245  return this->m_impl.coeffRef(this->srcCoeff(index));
246  }
247 
248  template <int StoreMode> EIGEN_STRONG_INLINE
249  void writePacket(Index index, const PacketReturnType& x)
250  {
251  EIGEN_STATIC_ASSERT((PacketSize > 1), YOU_MADE_A_PROGRAMMING_MISTAKE)
252 
253  EIGEN_ALIGN_MAX typename internal::remove_const<CoeffReturnType>::type values[PacketSize];
254  internal::pstore<CoeffReturnType, PacketReturnType>(values, x);
255  for (int i = 0; i < PacketSize; ++i) {
256  this->coeffRef(index+i) = values[i];
257  }
258  }
259 };
260 
261 
262 } // end namespace Eigen
263 
264 #endif // EIGEN_CXX11_TENSOR_TENSOR_SHUFFLING_H
Definition: TensorExecutor.h:27
Definition: TensorCostModel.h:25
Storage order is column major (see TopicStorageOrders).
Definition: Constants.h:320
Definition: XprHelper.h:158
Namespace containing all symbols from the Eigen library.
Definition: bench_norm.cpp:85
A cost model used to limit the number of threads used for evaluating tensor expression.
Definition: TensorEvaluator.h:28
Definition: TensorAssign.h:60
Definition: GenericPacketMath.h:96
Definition: TensorForwardDeclarations.h:54
EIGEN_DEFAULT_DENSE_INDEX_TYPE Index
The Index type as used for the API.
Definition: Meta.h:33
Definition: TensorDeviceDefault.h:17
The tensor base class.
Definition: TensorBase.h:827
Definition: BandTriangularSolver.h:13
Definition: TensorTraits.h:170
The type used to identify a dense storage.
Definition: Constants.h:491
Generic expression where a coefficient-wise unary operator is applied to an expression.
Definition: CwiseUnaryOp.h:55
Definition: ForwardDeclarations.h:17
Definition: XprHelper.h:312
Definition: EmulateArray.h:203