compbio
UpperBidiagonalization.h
1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2010 Benoit Jacob <jacob.benoit.1@gmail.com>
5 // Copyright (C) 2013-2014 Gael Guennebaud <gael.guennebaud@inria.fr>
6 //
7 // This Source Code Form is subject to the terms of the Mozilla
8 // Public License v. 2.0. If a copy of the MPL was not distributed
9 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
10 
11 #ifndef EIGEN_BIDIAGONALIZATION_H
12 #define EIGEN_BIDIAGONALIZATION_H
13 
14 namespace Eigen {
15 
16 namespace internal {
17 // UpperBidiagonalization will probably be replaced by a Bidiagonalization class, don't want to make it stable API.
18 // At the same time, it's useful to keep for now as it's about the only thing that is testing the BandMatrix class.
19 
20 template<typename _MatrixType> class UpperBidiagonalization
21 {
22  public:
23 
24  typedef _MatrixType MatrixType;
25  enum {
26  RowsAtCompileTime = MatrixType::RowsAtCompileTime,
27  ColsAtCompileTime = MatrixType::ColsAtCompileTime,
28  ColsAtCompileTimeMinusOne = internal::decrement_size<ColsAtCompileTime>::ret
29  };
30  typedef typename MatrixType::Scalar Scalar;
31  typedef typename MatrixType::RealScalar RealScalar;
32  typedef Eigen::Index Index;
38  typedef HouseholderSequence<
39  const MatrixType,
42  typedef HouseholderSequence<
47 
54  UpperBidiagonalization() : m_householder(), m_bidiagonal(), m_isInitialized(false) {}
55 
56  explicit UpperBidiagonalization(const MatrixType& matrix)
57  : m_householder(matrix.rows(), matrix.cols()),
58  m_bidiagonal(matrix.cols(), matrix.cols()),
59  m_isInitialized(false)
60  {
61  compute(matrix);
62  }
63 
64  UpperBidiagonalization& compute(const MatrixType& matrix);
65  UpperBidiagonalization& computeUnblocked(const MatrixType& matrix);
66 
67  const MatrixType& householder() const { return m_householder; }
68  const BidiagonalType& bidiagonal() const { return m_bidiagonal; }
69 
70  const HouseholderUSequenceType householderU() const
71  {
72  eigen_assert(m_isInitialized && "UpperBidiagonalization is not initialized.");
73  return HouseholderUSequenceType(m_householder, m_householder.diagonal().conjugate());
74  }
75 
76  const HouseholderVSequenceType householderV() // const here gives nasty errors and i'm lazy
77  {
78  eigen_assert(m_isInitialized && "UpperBidiagonalization is not initialized.");
79  return HouseholderVSequenceType(m_householder.conjugate(), m_householder.const_derived().template diagonal<1>())
80  .setLength(m_householder.cols()-1)
81  .setShift(1);
82  }
83 
84  protected:
85  MatrixType m_householder;
86  BidiagonalType m_bidiagonal;
87  bool m_isInitialized;
88 };
89 
90 // Standard upper bidiagonalization without fancy optimizations
91 // This version should be faster for small matrix size
92 template<typename MatrixType>
93 void upperbidiagonalization_inplace_unblocked(MatrixType& mat,
94  typename MatrixType::RealScalar *diagonal,
95  typename MatrixType::RealScalar *upper_diagonal,
96  typename MatrixType::Scalar* tempData = 0)
97 {
98  typedef typename MatrixType::Scalar Scalar;
99 
100  Index rows = mat.rows();
101  Index cols = mat.cols();
102 
104  TempType tempVector;
105  if(tempData==0)
106  {
107  tempVector.resize(rows);
108  tempData = tempVector.data();
109  }
110 
111  for (Index k = 0; /* breaks at k==cols-1 below */ ; ++k)
112  {
113  Index remainingRows = rows - k;
114  Index remainingCols = cols - k - 1;
115 
116  // construct left householder transform in-place in A
117  mat.col(k).tail(remainingRows)
118  .makeHouseholderInPlace(mat.coeffRef(k,k), diagonal[k]);
119  // apply householder transform to remaining part of A on the left
120  mat.bottomRightCorner(remainingRows, remainingCols)
121  .applyHouseholderOnTheLeft(mat.col(k).tail(remainingRows-1), mat.coeff(k,k), tempData);
122 
123  if(k == cols-1) break;
124 
125  // construct right householder transform in-place in mat
126  mat.row(k).tail(remainingCols)
127  .makeHouseholderInPlace(mat.coeffRef(k,k+1), upper_diagonal[k]);
128  // apply householder transform to remaining part of mat on the left
129  mat.bottomRightCorner(remainingRows-1, remainingCols)
130  .applyHouseholderOnTheRight(mat.row(k).tail(remainingCols-1).transpose(), mat.coeff(k,k+1), tempData);
131  }
132 }
133 
151 template<typename MatrixType>
152 void upperbidiagonalization_blocked_helper(MatrixType& A,
153  typename MatrixType::RealScalar *diagonal,
154  typename MatrixType::RealScalar *upper_diagonal,
155  Index bs,
156  Ref<Matrix<typename MatrixType::Scalar, Dynamic, Dynamic,
158  Ref<Matrix<typename MatrixType::Scalar, Dynamic, Dynamic,
160 {
161  typedef typename MatrixType::Scalar Scalar;
162  enum { StorageOrder = traits<MatrixType>::Flags & RowMajorBit };
165  typedef Ref<Matrix<Scalar, Dynamic, 1>, 0, ColInnerStride> SubColumnType;
166  typedef Ref<Matrix<Scalar, 1, Dynamic>, 0, RowInnerStride> SubRowType;
168 
169  Index brows = A.rows();
170  Index bcols = A.cols();
171 
172  Scalar tau_u, tau_u_prev(0), tau_v;
173 
174  for(Index k = 0; k < bs; ++k)
175  {
176  Index remainingRows = brows - k;
177  Index remainingCols = bcols - k - 1;
178 
179  SubMatType X_k1( X.block(k,0, remainingRows,k) );
180  SubMatType V_k1( A.block(k,0, remainingRows,k) );
181 
182  // 1 - update the k-th column of A
183  SubColumnType v_k = A.col(k).tail(remainingRows);
184  v_k -= V_k1 * Y.row(k).head(k).adjoint();
185  if(k) v_k -= X_k1 * A.col(k).head(k);
186 
187  // 2 - construct left Householder transform in-place
188  v_k.makeHouseholderInPlace(tau_v, diagonal[k]);
189 
190  if(k+1<bcols)
191  {
192  SubMatType Y_k ( Y.block(k+1,0, remainingCols, k+1) );
193  SubMatType U_k1 ( A.block(0,k+1, k,remainingCols) );
194 
195  // this eases the application of Householder transforAions
196  // A(k,k) will store tau_v later
197  A(k,k) = Scalar(1);
198 
199  // 3 - Compute y_k^T = tau_v * ( A^T*v_k - Y_k-1*V_k-1^T*v_k - U_k-1*X_k-1^T*v_k )
200  {
201  SubColumnType y_k( Y.col(k).tail(remainingCols) );
202 
203  // let's use the begining of column k of Y as a temporary vector
204  SubColumnType tmp( Y.col(k).head(k) );
205  y_k.noalias() = A.block(k,k+1, remainingRows,remainingCols).adjoint() * v_k; // bottleneck
206  tmp.noalias() = V_k1.adjoint() * v_k;
207  y_k.noalias() -= Y_k.leftCols(k) * tmp;
208  tmp.noalias() = X_k1.adjoint() * v_k;
209  y_k.noalias() -= U_k1.adjoint() * tmp;
210  y_k *= numext::conj(tau_v);
211  }
212 
213  // 4 - update k-th row of A (it will become u_k)
214  SubRowType u_k( A.row(k).tail(remainingCols) );
215  u_k = u_k.conjugate();
216  {
217  u_k -= Y_k * A.row(k).head(k+1).adjoint();
218  if(k) u_k -= U_k1.adjoint() * X.row(k).head(k).adjoint();
219  }
220 
221  // 5 - construct right Householder transform in-place
222  u_k.makeHouseholderInPlace(tau_u, upper_diagonal[k]);
223 
224  // this eases the application of Householder transformations
225  // A(k,k+1) will store tau_u later
226  A(k,k+1) = Scalar(1);
227 
228  // 6 - Compute x_k = tau_u * ( A*u_k - X_k-1*U_k-1^T*u_k - V_k*Y_k^T*u_k )
229  {
230  SubColumnType x_k ( X.col(k).tail(remainingRows-1) );
231 
232  // let's use the begining of column k of X as a temporary vectors
233  // note that tmp0 and tmp1 overlaps
234  SubColumnType tmp0 ( X.col(k).head(k) ),
235  tmp1 ( X.col(k).head(k+1) );
236 
237  x_k.noalias() = A.block(k+1,k+1, remainingRows-1,remainingCols) * u_k.transpose(); // bottleneck
238  tmp0.noalias() = U_k1 * u_k.transpose();
239  x_k.noalias() -= X_k1.bottomRows(remainingRows-1) * tmp0;
240  tmp1.noalias() = Y_k.adjoint() * u_k.transpose();
241  x_k.noalias() -= A.block(k+1,0, remainingRows-1,k+1) * tmp1;
242  x_k *= numext::conj(tau_u);
243  tau_u = numext::conj(tau_u);
244  u_k = u_k.conjugate();
245  }
246 
247  if(k>0) A.coeffRef(k-1,k) = tau_u_prev;
248  tau_u_prev = tau_u;
249  }
250  else
251  A.coeffRef(k-1,k) = tau_u_prev;
252 
253  A.coeffRef(k,k) = tau_v;
254  }
255 
256  if(bs<bcols)
257  A.coeffRef(bs-1,bs) = tau_u_prev;
258 
259  // update A22
260  if(bcols>bs && brows>bs)
261  {
262  SubMatType A11( A.bottomRightCorner(brows-bs,bcols-bs) );
263  SubMatType A10( A.block(bs,0, brows-bs,bs) );
264  SubMatType A01( A.block(0,bs, bs,bcols-bs) );
265  Scalar tmp = A01(bs-1,0);
266  A01(bs-1,0) = 1;
267  A11.noalias() -= A10 * Y.topLeftCorner(bcols,bs).bottomRows(bcols-bs).adjoint();
268  A11.noalias() -= X.topLeftCorner(brows,bs).bottomRows(brows-bs) * A01;
269  A01(bs-1,0) = tmp;
270  }
271 }
272 
281 template<typename MatrixType, typename BidiagType>
282 void upperbidiagonalization_inplace_blocked(MatrixType& A, BidiagType& bidiagonal,
283  Index maxBlockSize=32,
284  typename MatrixType::Scalar* /*tempData*/ = 0)
285 {
286  typedef typename MatrixType::Scalar Scalar;
287  typedef Block<MatrixType,Dynamic,Dynamic> BlockType;
288 
289  Index rows = A.rows();
290  Index cols = A.cols();
291  Index size = (std::min)(rows, cols);
292 
293  // X and Y are work space
294  enum { StorageOrder = traits<MatrixType>::Flags & RowMajorBit };
295  Matrix<Scalar,
296  MatrixType::RowsAtCompileTime,
297  Dynamic,
298  StorageOrder,
299  MatrixType::MaxRowsAtCompileTime> X(rows,maxBlockSize);
300  Matrix<Scalar,
301  MatrixType::ColsAtCompileTime,
302  Dynamic,
303  StorageOrder,
304  MatrixType::MaxColsAtCompileTime> Y(cols,maxBlockSize);
305  Index blockSize = (std::min)(maxBlockSize,size);
306 
307  Index k = 0;
308  for(k = 0; k < size; k += blockSize)
309  {
310  Index bs = (std::min)(size-k,blockSize); // actual size of the block
311  Index brows = rows - k; // rows of the block
312  Index bcols = cols - k; // columns of the block
313 
314  // partition the matrix A:
315  //
316  // | A00 A01 A02 |
317  // | |
318  // A = | A10 A11 A12 |
319  // | |
320  // | A20 A21 A22 |
321  //
322  // where A11 is a bs x bs diagonal block,
323  // and let:
324  // | A11 A12 |
325  // B = | |
326  // | A21 A22 |
327 
328  BlockType B = A.block(k,k,brows,bcols);
329 
330  // This stage performs the bidiagonalization of A11, A21, A12, and updating of A22.
331  // Finally, the algorithm continue on the updated A22.
332  //
333  // However, if B is too small, or A22 empty, then let's use an unblocked strategy
334  if(k+bs==cols || bcols<48) // somewhat arbitrary threshold
335  {
336  upperbidiagonalization_inplace_unblocked(B,
337  &(bidiagonal.template diagonal<0>().coeffRef(k)),
338  &(bidiagonal.template diagonal<1>().coeffRef(k)),
339  X.data()
340  );
341  break; // We're done
342  }
343  else
344  {
345  upperbidiagonalization_blocked_helper<BlockType>( B,
346  &(bidiagonal.template diagonal<0>().coeffRef(k)),
347  &(bidiagonal.template diagonal<1>().coeffRef(k)),
348  bs,
349  X.topLeftCorner(brows,bs),
350  Y.topLeftCorner(bcols,bs)
351  );
352  }
353  }
354 }
355 
356 template<typename _MatrixType>
358 {
359  Index rows = matrix.rows();
360  Index cols = matrix.cols();
361  EIGEN_ONLY_USED_FOR_DEBUG(cols);
362 
363  eigen_assert(rows >= cols && "UpperBidiagonalization is only for Arices satisfying rows>=cols.");
364 
365  m_householder = matrix;
366 
367  ColVectorType temp(rows);
368 
369  upperbidiagonalization_inplace_unblocked(m_householder,
370  &(m_bidiagonal.template diagonal<0>().coeffRef(0)),
371  &(m_bidiagonal.template diagonal<1>().coeffRef(0)),
372  temp.data());
373 
374  m_isInitialized = true;
375  return *this;
376 }
377 
378 template<typename _MatrixType>
380 {
381  Index rows = matrix.rows();
382  Index cols = matrix.cols();
383  EIGEN_ONLY_USED_FOR_DEBUG(rows);
384  EIGEN_ONLY_USED_FOR_DEBUG(cols);
385 
386  eigen_assert(rows >= cols && "UpperBidiagonalization is only for Arices satisfying rows>=cols.");
387 
388  m_householder = matrix;
389  upperbidiagonalization_inplace_blocked(m_householder, m_bidiagonal);
390 
391  m_isInitialized = true;
392  return *this;
393 }
394 
395 #if 0
396 
400 template<typename Derived>
403 {
405 }
406 #endif
407 
408 } // end namespace internal
409 
410 } // end namespace Eigen
411 
412 #endif // EIGEN_BIDIAGONALIZATION_H
Apply transformation on the right.
Definition: Constants.h:335
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar * data() const
Definition: PlainObjectBase.h:249
Namespace containing all symbols from the Eigen library.
Definition: bench_norm.cpp:85
const unsigned int RowMajorBit
for a matrix, this means that the storage order is row-major.
Definition: Constants.h:61
Definition: ForwardDeclarations.h:262
Eigen::Index Index
Definition: UpperBidiagonalization.h:32
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void resize(Index rows, Index cols)
Resizes *this to a rows x cols matrix.
Definition: PlainObjectBase.h:273
Definition: Householder.h:17
Convenience specialization of Stride to specify only an inner stride See class Map for some examples...
Definition: Stride.h:90
EIGEN_DEFAULT_DENSE_INDEX_TYPE Index
The Index type as used for the API.
Definition: Meta.h:33
Definition: UpperBidiagonalization.h:20
A matrix or vector expression mapping an existing expression.
Definition: Ref.h:190
Definition: BandTriangularSolver.h:13
UpperBidiagonalization()
Default Constructor.
Definition: UpperBidiagonalization.h:54
Expression of a fixed-size or dynamic-size block.
Definition: Block.h:103
Definition: Meta.h:78
Expression of a diagonal/subdiagonal/superdiagonal in a matrix.
Definition: Diagonal.h:63
const int Dynamic
This value means that a positive quantity (e.g., a size) is not known at compile-time, and that instead the value is stored in some runtime variable.
Definition: Constants.h:21
The matrix class, also used for vectors and row-vectors.
Definition: Matrix.h:178
Base class for all dense matrices, vectors, and expressions.
Definition: MatrixBase.h:48
Definition: ForwardDeclarations.h:17
Definition: XprHelper.h:312