|
dictionary | Heisenberg_VQE.config |
|
| Heisenberg_VQE.eigval = np.real(eigvals[0]) |
|
| Heisenberg_VQE.eigvec = eigvecs[:,0] |
|
| Heisenberg_VQE.entropy = VQE_Heisenberg.get_Second_Renyi_Entropy( parameters=parameters, qubit_list=qubit_list ) |
|
| Heisenberg_VQE.entropy_exact_gs = VQE_Heisenberg.get_Second_Renyi_Entropy( parameters=np.array([]), qubit_list=[0,1], input_state=eigvec ) |
|
| Heisenberg_VQE.flush |
|
def | Heisenberg_VQE.Hamiltonian = generate_hamiltonian_tmp( qbit_num ) |
|
| Heisenberg_VQE.initial_state = np.zeros( (1 << qbit_num), dtype=np.complex128 ) |
|
int | Heisenberg_VQE.inner_blocks = 1 |
|
| Heisenberg_VQE.k |
|
int | Heisenberg_VQE.layers = 500 |
|
| Heisenberg_VQE.linewidth |
|
int | Heisenberg_VQE.normalized_entropy = entropy/page_entropy |
|
int | Heisenberg_VQE.normalized_entropy_exact_gs = entropy_exact_gs/page_entropy |
|
| Heisenberg_VQE.overlap = state_to_transform.transpose().conjugate() @ eigvecs |
|
| Heisenberg_VQE.overlap_norm = np.real(overlap * overlap.conjugate()) |
|
int | Heisenberg_VQE.page_entropy = 2 * np.log(2.0) - 1.0/( pow(2, qbit_num-2*2+1) ) |
|
| Heisenberg_VQE.param_num = VQE_Heisenberg.get_Parameter_Num() |
|
int | Heisenberg_VQE.parameters = np.random.randn( param_num )*2*np.pi |
|
int | Heisenberg_VQE.qbit_num = 16 |
|
list | Heisenberg_VQE.qubit_list = [0,1] |
|
| Heisenberg_VQE.state_to_transform = initial_state.copy() |
|
list | Heisenberg_VQE.topology = [] |
|
| Heisenberg_VQE.VQE_energy = VQE_Heisenberg.Optimization_Problem( parameters ) |
|
| Heisenberg_VQE.VQE_Heisenberg = Variational_Quantum_Eigensolver(Hamiltonian, qbit_num, config, accelerator_num=1) |
|
| Heisenberg_VQE.which |
|