40 #ifndef AVCODEC_AACCODER_TWOLOOP_H 41 #define AVCODEC_AACCODER_TWOLOOP_H 54 #define NOISE_LOW_LIMIT 4000 56 #define sclip(x) av_clip(x,60,218) 61 return (!g || !sce->
zeroes[w*16+g-1] || !sce->
can_pns[w*16+g-1]) ? 9 : 5;
72 int start = 0, i, w, w2, g, recomprd;
76 int refbits = destbits;
77 int toomanybits, toofewbits;
79 uint8_t nextband[128];
80 int maxsf[128], minsf[128];
81 float dists[128] = { 0 }, qenergies[128] = { 0 }, uplims[128], euplims[128], energies[128];
82 float maxvals[128], spread_thr_r[128];
83 float min_spread_thr_r, max_spread_thr_r;
94 float rdlambda = av_clipf(2.0f * 120.f / lambda, 0.0625f, 16.0f);
95 const float nzslope = 1.5f;
96 float rdmin = 0.03125f;
104 float sfoffs = av_clipf(log2f(120.0f / lambda) * 4.0f, -5, 10);
106 int fflag, minscaler, maxscaler, nminscaler;
124 if (lambda > 120.f) {
125 zeroscale = av_clipf(powf(120.f / lambda, 0.25f), 0.0625f, 1.0f);
130 if (s->psy.bitres.
alloc >= 0) {
135 destbits = s->psy.bitres.
alloc 153 toofewbits = destbits / 16;
156 sfoffs = sce->ics.num_windows - 1;
157 rdlambda = sqrtf(rdlambda);
167 toomanybits = destbits + destbits/8;
168 toofewbits = destbits - destbits/8;
171 rdlambda = sqrtf(rdlambda);
176 int wlen = 1024 / sce->ics.num_windows;
186 float rate_bandwidth_multiplier = 1.5f;
188 ? (refbits * rate_bandwidth_multiplier * avctx->
sample_rate / 1024)
193 frame_bit_rate *= 1.15f;
196 bandwidth = avctx->
cutoff;
198 bandwidth = FFMAX(3000, AAC_CUTOFF_FROM_BITRATE(frame_bit_rate, 1, avctx->
sample_rate));
199 s->psy.
cutoff = bandwidth;
202 cutoff = bandwidth * 2 * wlen / avctx->
sample_rate;
210 destbits = FFMIN(destbits, 5800);
211 toomanybits = FFMIN(toomanybits, 5800);
212 toofewbits = FFMIN(toofewbits, 5800);
217 min_spread_thr_r = -1;
218 max_spread_thr_r = -1;
219 for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
220 for (g = start = 0; g < sce->ics.
num_swb; start += sce->ics.
swb_sizes[g++]) {
222 float uplim = 0.0f, energy = 0.0f, spread = 0.0f;
223 for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
225 if (start >= cutoff || band->energy <= (band->threshold * zeroscale) || band->threshold == 0.0f) {
226 sce->
zeroes[(w+w2)*16+g] = 1;
235 for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
237 if (band->energy <= (band->threshold * zeroscale) || band->threshold == 0.0f)
239 uplim += band->threshold;
240 energy += band->energy;
241 spread += band->spread;
245 uplims[w*16+g] = uplim;
246 energies[w*16+g] = energy;
248 sce->
zeroes[w*16+g] = !nz;
250 if (nz && sce->
can_pns[w*16+g]) {
251 spread_thr_r[w*16+g] = energy * nz / (uplim * spread);
252 if (min_spread_thr_r < 0) {
253 min_spread_thr_r = max_spread_thr_r = spread_thr_r[w*16+g];
255 min_spread_thr_r = FFMIN(min_spread_thr_r, spread_thr_r[w*16+g]);
256 max_spread_thr_r = FFMAX(max_spread_thr_r, spread_thr_r[w*16+g]);
264 for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
265 for (g = 0; g < sce->ics.
num_swb; g++) {
266 if (sce->
zeroes[w*16+g]) {
276 sce->
sf_idx[w*16+g] = av_clip(
278 + 1.75*log2f(FFMAX(0.00125f,uplims[w*16+g]) / sce->ics.
swb_sizes[g])
281 minscaler = FFMIN(minscaler, sce->
sf_idx[w*16+g]);
287 for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w])
288 for (g = 0; g < sce->ics.
num_swb; g++)
294 s->abs_pow34(s->scoefs, sce->coeffs, 1024);
295 ff_quantize_band_cost_cache_init(s);
297 for (i = 0; i <
sizeof(minsf) /
sizeof(minsf[0]); ++i)
299 for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
301 for (g = 0; g < sce->ics.
num_swb; g++) {
302 const float *scaled = s->scoefs + start;
304 maxvals[w*16+g] = find_max_val(sce->ics.group_len[w], sce->ics.
swb_sizes[g], scaled);
305 if (maxvals[w*16+g] > 0) {
306 minsfidx = coef2minsf(maxvals[w*16+g]);
307 for (w2 = 0; w2 < sce->ics.group_len[w]; w2++)
308 minsf[(w+w2)*16+g] = minsfidx;
321 memcpy(euplims, uplims,
sizeof(euplims));
322 for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
324 float de_psy_factor = (sce->ics.num_windows > 1) ? 8.0f / sce->ics.group_len[w] : 1.0f;
326 for (g = 0; g < sce->ics.
num_swb; g++) {
328 float cleanup_factor = ff_sqrf(av_clipf(start / (cutoff * 0.75f), 1.0f, 2.0f));
329 float energy2uplim = find_form_factor(
330 sce->ics.group_len[w], sce->ics.
swb_sizes[g],
331 uplims[w*16+g] / (nzs[g] * sce->ics.
swb_sizes[w]),
333 nzslope * cleanup_factor);
334 energy2uplim *= de_psy_factor;
337 energy2uplim = sqrtf(energy2uplim);
339 energy2uplim = FFMAX(0.015625f, FFMIN(1.0f, energy2uplim));
340 uplims[w*16+g] *= av_clipf(rdlambda * energy2uplim, rdmin, rdmax)
341 * sce->ics.group_len[w];
343 energy2uplim = find_form_factor(
344 sce->ics.group_len[w], sce->ics.
swb_sizes[g],
345 uplims[w*16+g] / (nzs[g] * sce->ics.
swb_sizes[w]),
348 energy2uplim *= de_psy_factor;
351 energy2uplim = sqrtf(energy2uplim);
353 energy2uplim = FFMAX(0.015625f, FFMIN(1.0f, energy2uplim));
354 euplims[w*16+g] *= av_clipf(rdlambda * energy2uplim * sce->ics.group_len[w],
361 for (i = 0; i <
sizeof(maxsf) /
sizeof(maxsf[0]); ++i)
369 int qstep = its ? 1 : 32;
375 for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
377 for (g = 0; g < sce->ics.
num_swb; g++) {
378 const float *coefs = &sce->coeffs[start];
379 const float *scaled = &s->scoefs[start];
383 float qenergy = 0.0f;
385 if (sce->
zeroes[w*16+g] || sce->
sf_idx[w*16+g] >= 218) {
389 tbits += ff_pns_bits(sce, w, g);
393 cb = find_min_book(maxvals[w*16+g], sce->
sf_idx[w*16+g]);
394 for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
397 dist += quantize_band_cost_cached(s, w + w2, g, coefs + w2*128,
409 dists[w*16+g] = dist - bits;
410 qenergies[w*16+g] = qenergy;
413 bits += ff_aac_scalefactor_bits[sfdiff];
417 prev = sce->
sf_idx[w*16+g];
420 if (tbits > toomanybits) {
422 for (i = 0; i < 128; i++) {
425 int new_sf = FFMIN(maxsf_i, sce->
sf_idx[i] + qstep);
426 if (new_sf != sce->
sf_idx[i]) {
432 }
else if (tbits < toofewbits) {
434 for (i = 0; i < 128; i++) {
437 if (new_sf != sce->
sf_idx[i]) {
445 if (!qstep && tbits > toomanybits && sce->
sf_idx[0] < 217 && changed)
450 fflag = tbits < toofewbits;
451 for (i = 0; i < 2 && (overdist || recomprd); ++i) {
456 for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
458 for (g = 0; g < sce->ics.
num_swb; g++) {
459 const float *coefs = sce->coeffs + start;
460 const float *scaled = s->scoefs + start;
464 float qenergy = 0.0f;
466 if (sce->
zeroes[w*16+g] || sce->
sf_idx[w*16+g] >= 218) {
470 tbits += ff_pns_bits(sce, w, g);
474 cb = find_min_book(maxvals[w*16+g], sce->
sf_idx[w*16+g]);
475 for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
478 dist += quantize_band_cost_cached(s, w + w2, g, coefs + w2*128,
490 dists[w*16+g] = dist - bits;
491 qenergies[w*16+g] = qenergy;
494 bits += ff_aac_scalefactor_bits[sfdiff];
498 prev = sce->
sf_idx[w*16+g];
502 if (!i && s->
options.pns && its > maxits/2 && tbits > toofewbits) {
503 float maxoverdist = 0.0f;
504 float ovrfactor = 1.f+(maxits-its)*16.f/maxits;
505 overdist = recomprd = 0;
506 for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
507 for (g = start = 0; g < sce->ics.
num_swb; start += sce->ics.
swb_sizes[g++]) {
509 float ovrdist = dists[w*16+g] / FFMAX(uplims[w*16+g],euplims[w*16+g]);
510 maxoverdist = FFMAX(maxoverdist, ovrdist);
519 float minspread = max_spread_thr_r;
520 float maxspread = min_spread_thr_r;
524 int maxzeroed, zloop;
525 for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
526 for (g = start = 0; g < sce->ics.
num_swb; start += sce->ics.
swb_sizes[g++]) {
527 if (start >= pns_start_pos && !sce->
zeroes[w*16+g] && sce->
can_pns[w*16+g]) {
528 minspread = FFMIN(minspread, spread_thr_r[w*16+g]);
529 maxspread = FFMAX(maxspread, spread_thr_r[w*16+g]);
534 zspread = (maxspread-minspread) * 0.0125f + minspread;
540 zspread = FFMIN3(min_spread_thr_r * 8.f, zspread,
541 ((toomanybits - tbits) * min_spread_thr_r + (tbits - toofewbits) * max_spread_thr_r) / (toomanybits - toofewbits + 1));
542 maxzeroed = FFMIN(zeroable, FFMAX(1, (zeroable * its + maxits - 1) / (2 * maxits)));
543 for (zloop = 0; zloop < 2; zloop++) {
550 float loopovrfactor = (zloop) ? 1.0f : ovrfactor;
553 for (g = sce->ics.
num_swb-1; g > 0 && zeroed < maxzeroed; g--) {
556 for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
557 if (!sce->
zeroes[w*16+g] && sce->
can_pns[w*16+g] && spread_thr_r[w*16+g] <= zspread
558 && sce->
sf_idx[w*16+g] > loopminsf
559 && (dists[w*16+g] > loopovrfactor*uplims[w*16+g] || !(mcb = find_min_book(maxvals[w*16+g], sce->
sf_idx[w*16+g]))
560 || (mcb <= 1 && dists[w*16+g] > FFMIN(uplims[w*16+g], euplims[w*16+g]))) ) {
569 recomprd = fflag = 1;
578 for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
579 for (g = 0; g < sce->ics.
num_swb; g++) {
580 if (!sce->
zeroes[w*16+g]) {
581 minscaler = FFMIN(minscaler, sce->
sf_idx[w*16+g]);
582 maxscaler = FFMAX(maxscaler, sce->
sf_idx[w*16+g]);
589 for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
591 int depth = (its > maxits/2) ? ((its > maxits*2/3) ? 1 : 3) : 10;
592 int edepth = depth+2;
593 float uplmax = its / (maxits*0.25f) + 1.0f;
594 uplmax *= (tbits > destbits) ? FFMIN(2.0f, tbits / (
float)FFMAX(1,destbits)) : 1.0f;
596 for (g = 0; g < sce->ics.
num_swb; g++) {
597 int prevsc = sce->
sf_idx[w*16+g];
598 if (prev < 0 && !sce->zeroes[w*16+g])
600 if (!sce->
zeroes[w*16+g]) {
601 const float *coefs = sce->coeffs + start;
602 const float *scaled = s->scoefs + start;
603 int cmb = find_min_book(maxvals[w*16+g], sce->
sf_idx[w*16+g]);
606 if ((!cmb || dists[w*16+g] > uplims[w*16+g]) && sce->
sf_idx[w*16+g] > FFMAX(mindeltasf, minsf[w*16+g])) {
613 for (i = 0; i < edepth && sce->
sf_idx[w*16+g] > mindeltasf; ++i) {
616 int mb = find_min_book(maxvals[w*16+g], sce->
sf_idx[w*16+g]-1);
617 cb = find_min_book(maxvals[w*16+g], sce->
sf_idx[w*16+g]);
618 dist = qenergy = 0.f;
621 maxsf[w*16+g] = FFMIN(sce->
sf_idx[w*16+g]-1, maxsf[w*16+g]);
622 }
else if (i >= depth && dists[w*16+g] < euplims[w*16+g]) {
629 if (!g && sce->ics.num_windows > 1 && dists[w*16+g] >= euplims[w*16+g])
630 maxsf[w*16+g] = FFMIN(sce->
sf_idx[w*16+g], maxsf[w*16+g]);
631 for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
634 dist += quantize_band_cost_cached(s, w + w2, g, coefs + w2*128,
647 dists[w*16+g] = dist - bits;
648 qenergies[w*16+g] = qenergy;
649 if (mb && (sce->
sf_idx[w*16+g] < mindeltasf || (
650 (dists[w*16+g] < FFMIN(uplmax*uplims[w*16+g], euplims[w*16+g]))
651 && (fabsf(qenergies[w*16+g]-energies[w*16+g]) < euplims[w*16+g])
656 }
else if (tbits > toofewbits && sce->
sf_idx[w*16+g] < FFMIN(maxdeltasf, maxsf[w*16+g])
657 && (dists[w*16+g] < FFMIN(euplims[w*16+g], uplims[w*16+g]))
658 && (fabsf(qenergies[w*16+g]-energies[w*16+g]) < euplims[w*16+g])
661 for (i = 0; i < depth && sce->
sf_idx[w*16+g] < maxdeltasf; ++i) {
664 cb = find_min_book(maxvals[w*16+g], sce->
sf_idx[w*16+g]+1);
666 dist = qenergy = 0.f;
668 for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
671 dist += quantize_band_cost_cached(s, w + w2, g, coefs + w2*128,
684 if (dist < FFMIN(euplims[w*16+g], uplims[w*16+g])) {
686 dists[w*16+g] = dist;
687 qenergies[w*16+g] = qenergy;
692 maxsf[w*16+g] = FFMIN(sce->
sf_idx[w*16+g], maxsf[w*16+g]);
697 prev = sce->
sf_idx[w*16+g] = av_clip(sce->
sf_idx[w*16+g], mindeltasf, maxdeltasf);
698 if (sce->
sf_idx[w*16+g] != prevsc)
700 nminscaler = FFMIN(nminscaler, sce->
sf_idx[w*16+g]);
701 sce->
band_type[w*16+g] = find_min_book(maxvals[w*16+g], sce->
sf_idx[w*16+g]);
709 for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
710 for (g = 0; g < sce->ics.
num_swb; g++) {
711 if (!sce->
zeroes[w*16+g]) {
712 int prevsf = sce->
sf_idx[w*16+g];
716 sce->
band_type[w*16+g] = find_min_book(maxvals[w*16+g], sce->
sf_idx[w*16+g]);
717 prev = sce->
sf_idx[w*16+g];
718 if (!fflag && prevsf != sce->
sf_idx[w*16+g])
725 }
while (fflag && its < maxits);
728 ff_init_nextband_map(sce, nextband);
731 for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
733 for (g = 0; g < sce->ics.
num_swb; g++) {
734 if (!sce->
zeroes[w*16+g]) {
735 sce->
band_type[w*16+g] = find_min_book(maxvals[w*16+g], sce->
sf_idx[w*16+g]);
737 if (!ff_sfdelta_can_remove_band(sce, nextband, prev, w*16+g)) {
749 if (!sce->
zeroes[w*16+g]) {
753 }
else if (sce->
zeroes[0]) {
757 prev = sce->
sf_idx[w*16+g];
enum RawDataBlockType cur_type
channel group type cur_channel belongs to
Definition: aacenc.h:404
int64_t bit_rate
the average bitrate
Definition: avcodec.h:1568
#define SCALE_DIFF_ZERO
codebook index corresponding to zero scalefactor indices difference
Definition: aac.h:152
FFPsyBand psy_bands[PSY_MAX_BANDS]
channel bands information
Definition: psymodel.h:61
#define SCALE_MAX_POS
scalefactor index maximum value
Definition: aac.h:150
#define SCALE_MAX_DIFF
maximum scalefactor difference allowed by standard
Definition: aac.h:151
int alloc
number of bits allocated by the psy, or -1 if no allocation was done
Definition: psymodel.h:105
const uint16_t * swb_offset
table of offsets to the lowest spectral coefficient of a scalefactor band, sfb, for a particular wind...
Definition: aac.h:181
AACEncOptions options
encoding options
Definition: aacenc.h:378
AAC encoder context.
Definition: aacenc.h:376
single band psychoacoustic information
Definition: psymodel.h:50
int flags
AV_CODEC_FLAG_*.
Definition: avcodec.h:1598
int num_swb
number of scalefactor window bands
Definition: aac.h:183
#define SCALE_DIV_512
scalefactor difference that corresponds to scale difference in 512 times
Definition: aac.h:148
#define av_assert1(cond)
assert() equivalent, that does not lie in speed critical code.
Definition: avassert.h:53
#define AV_CODEC_FLAG_QSCALE
Use fixed qscale.
Definition: avcodec.h:833
int cur_channel
current channel for coder context
Definition: aacenc.h:398
uint8_t can_pns[128]
band is allowed to PNS (informative)
Definition: aac.h:258
Libavcodec external API header.
int sample_rate
samples per second
Definition: avcodec.h:2173
main external API structure.
Definition: avcodec.h:1518
const uint8_t * swb_sizes
table of scalefactor band sizes for a particular window
Definition: aac.h:182
int cutoff
lowpass frequency cutoff for analysis
Definition: psymodel.h:96
int global_quality
Global quality for codecs which cannot change it per frame.
Definition: avcodec.h:1584
uint8_t zeroes[128]
band is not coded (used by encoder)
Definition: aac.h:257
int sf_idx[128]
scalefactor indices (used by encoder)
Definition: aac.h:256
#define SCALE_ONE_POS
scalefactor index that corresponds to scale=1.0
Definition: aac.h:149
Single Channel Element - used for both SCE and LFE elements.
Definition: aac.h:248
int cutoff
Audio cutoff bandwidth (0 means "automatic")
Definition: avcodec.h:2217
int channels
number of audio channels
Definition: avcodec.h:2174
FFPsyChannel * ch
single channel information
Definition: psymodel.h:93
enum BandType band_type[128]
band types
Definition: aac.h:252
#define NOISE_LOW_LIMIT
This file contains a template for the twoloop coder function.
Definition: aaccoder_twoloop.h:54