xc
ASDShellQ4.h
1 // -*-c++-*-
2 //----------------------------------------------------------------------------
3 // XC program; finite element analysis code
4 // for structural analysis and design.
5 //
6 // Copyright (C) Luis C. Pérez Tato
7 //
8 // This program derives from OpenSees <http://opensees.berkeley.edu>
9 // developed by the «Pacific earthquake engineering research center».
10 //
11 // Except for the restrictions that may arise from the copyright
12 // of the original program (see copyright_opensees.txt)
13 // XC is free software: you can redistribute it and/or modify
14 // it under the terms of the GNU General Public License as published by
15 // the Free Software Foundation, either version 3 of the License, or
16 // (at your option) any later version.
17 //
18 // This software is distributed in the hope that it will be useful, but
19 // WITHOUT ANY WARRANTY; without even the implied warranty of
20 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 // GNU General Public License for more details.
22 //
23 //
24 // You should have received a copy of the GNU General Public License
25 // along with this program.
26 // If not, see <http://www.gnu.org/licenses/>.
27 //----------------------------------------------------------------------------
28 /* ****************************************************************** **
29 ** OpenSees - Open System for Earthquake Engineering Simulation **
30 ** Pacific Earthquake Engineering Research Center **
31 ** **
32 ** **
33 ** (C) Copyright 1999, The Regents of the University of California **
34 ** All Rights Reserved. **
35 ** **
36 ** Commercial use of this program without express permission of the **
37 ** University of California, Berkeley, is strictly prohibited. See **
38 ** file 'COPYRIGHT' in main directory for information on usage and **
39 ** redistribution, and for a DISCLAIMER OF ALL WARRANTIES. **
40 ** **
41 ** Developed by: **
42 ** Frank McKenna (fmckenna@ce.berkeley.edu) **
43 ** Gregory L. Fenves (fenves@ce.berkeley.edu) **
44 ** Filip C. Filippou (filippou@ce.berkeley.edu) **
45 ** **
46 ** ****************************************************************** */
47 
48 // $Revision: 1.10 $
49 // $Date: 2020/05/18 22:51:21 $
50 
51 // Original implementation: Massimo Petracca (ASDEA)
52 //
53 // A 4-node general shell element based on
54 // the AGQ6-I formulation for the membrane part,
55 // and the MITC4 formulation for the shear-deformable bending part.
56 //
57 // It supports both linear and corotational kinematics. Warped geometries
58 // can be modelled since this element is not assumed flat.
59 //
60 // References:
61 //
62 // 1 Chen, Xiao-Ming, et al. "Membrane elements insensitive to distortion
63 // using the quadrilateral area coordinate method."
64 // Computers & Structures 82.1 (2004): 35-54.
65 // http://www.paper.edu.cn/scholar/showpdf/MUT2ANwINTT0Ax5h
66 //
67 // 2 Dvorkin, Eduardo N., and Klaus-Jurgen Bathe.
68 // "A continuum mechanics based four-node shell element for
69 // general non-linear analysis." Engineering computations (1984).
70 // https://www.researchgate.net/profile/Eduardo_Dvorkin/publication/235313212_A_Continuum_mechanics_based_four-node_shell_element_for_general_nonlinear_analysis/links/00b7d52611d8813ffe000000.pdf
71 //
72 // 3 Bathe, Klaus-Jurgen, and Eduardo N. Dvorkin.
73 // "A four-node plate bending element based on Mindlin/Reissner plate theory
74 // and a mixed interpolation."
75 // International Journal for Numerical Methods in Engineering 21.2 (1985): 367-383.
76 // http://www.simytec.com/docs/Short_communicaion_%20four_node_plate.pdf
77 //
78 // 4 Hughes, Thomas JR, and F. Brezzi.
79 // "On drilling degrees of freedom."
80 // Computer methods in applied mechanics and engineering 72.1 (1989): 105-121.
81 // https://www.sciencedirect.com/science/article/pii/0045782589901242
82 //
83 // Notes:
84 //
85 // - The AGQ6-I formulation greatly enhances the membrane behavior of the
86 // standard 4-node iso-parametric element. However it does not pass the constant-strain
87 // patch test as most of the enhanced elements based on incompatible-modes.
88 // In this implementation the enhancing BQ matrix is corrected to make the element
89 // pass the constant strain patch test. At each gauss point the BQ = BQ - 1/V*BQ_mean
90 //
91 // - The drilling DOF is treated using the Hughes-Brezzi formulation. The drilling
92 // stiffness is taken equal to the initial (elastic) in-plane section shear modulus.
93 // Taking the real shear modulus (and not a scaled version of it, as suggested in many
94 // articles) is mandatory to obtain a correct response for warped shells, i.e. when
95 // the drilling rotation affects the bending rotation. However using the full shear modulus
96 // deteriorates the element membrane behavior, making the element stiffer. For example,
97 // when using softening material models, this drilling stiffness makes the element lock
98 // failing in representing crack propagation correctly.
99 // Here we solved this problem using a reduced integration for the drilling part. However
100 // a pure reduced integration for the drilling DOFs, leads to 3 spurious zero-energy modes.
101 // Therefore we also include a fully integrated contribution of the drilling DOFs
102 // scaling the drilling stiffness by 1.0e-4, so just to suppress these spurious zero energy modes.
103 //
104 
105 #ifndef ASDShellQ4_h
106 #define ASDShellQ4_h
107 
108 #include "utility/matrix/Vector.h"
109 #include "utility/matrix/Matrix.h"
110 #include "utility/matrix/ID.h"
111 #include "domain/mesh/element/plane/QuadBase4N.h"
112 #include "domain/mesh/element/utils/physical_properties/SectionFDPhysicalProperties.h"
113 
114 namespace XC {
115 
116 class SectionForceDeformation;
117 class ASDShellQ4Transformation;
118 class ASDShellQ4LocalCoordinateSystem;
119 
120 class ASDShellQ4: public QuadBase4N<SectionFDPhysicalProperties>
121  {
122  private:
123  // coordinate transformation
124  ASDShellQ4Transformation *m_transformation= nullptr;
125 
126  // vectors for applying load.
127  Vector m_load;
128 
129  // drilling strain for the indipendent rotation field (Hughes-Brezzi)
130  mutable std::vector<double> m_drill_strain= { 0.0, 0.0, 0.0, 0.0 };
131  double m_drill_stiffness = 0.0;
132 
133  // section orientation with respect to the local coordinate system
134  double m_angle = 0.0;
135 
136  // members for non-linear treatement of AGQI internal DOFs:
137  // it has 24 displacement DOFs
138  // and 4 internal DOFs for membrane enhancement
139  mutable Vector m_Q = Vector(4);
140  Vector m_Q_converged = Vector(4);
141  mutable Vector m_U = Vector(24);
142  Vector m_U_converged = Vector(24);
143  mutable Vector m_Q_residual = Vector(4);
144  mutable Matrix m_KQQ_inv = Matrix(4, 4);
145  mutable Matrix m_KQU = Matrix(4, 24); // L = G'*C*B
146  mutable Matrix m_KUQ = Matrix(24, 4); // L^T = B'*C'*G
147 
148  private:
149 
150  void free_mem(void);
151  void alloc(bool corotational);
152  void alloc(const ASDShellQ4Transformation *);
153  // internal method to compute everything using switches...
154  int calculateAll(Matrix& LHS, Vector& RHS, int options) const;
155 
156  void AGQIinitialize(void);
157  void AGQIupdate(const Vector& UL) const;
158  void AGQIbeginGaussLoop(const ASDShellQ4LocalCoordinateSystem& reference_cs) const;
159  protected:
160  int sendData(Communicator &);
161  int recvData(const Communicator &);
162 
163  public:
164 
165  // life cycle
166  ASDShellQ4(int tag= 0, bool corotational= true);
167  ASDShellQ4(int tag,const SectionForceDeformation *ptr_mat);
168  ASDShellQ4(int tag,
169  int node1,
170  int node2,
171  int node3,
172  int node4,
173  SectionForceDeformation* section,
174  bool corotational = true);
175  ASDShellQ4(const ASDShellQ4 &);
176  ASDShellQ4 &operator=(const ASDShellQ4 &);
177  virtual ~ASDShellQ4();
178  Element *getCopy(void) const;
179 
180  // domain
181  void setDomain(Domain* theDomain);
182 
183  // print
184  void Print(std::ostream &, int flag);
185 
186  int getNumDOF(void) const;
187 
188  // methods dealing with committed state and update
189  int commitState(void);
190  int revertToLastCommit(void);
191  int revertToStart(void);
192  int update(void);
193 
194  // methods to return the current linearized stiffness,
195  // damping and mass matrices
196  const Matrix &getTangentStiff(void) const;
197  const Matrix &getInitialStiff(void) const;
198  const Matrix &getMass(void) const;
199 
200  // methods for applying loads
201  void alive(void);
202  void zeroLoad(void);
203  int addLoad(ElementalLoad* theLoad, double loadFactor);
204  int addInertiaLoadToUnbalance(const Vector& accel);
205 
206  // methods for obtaining resisting force (force includes elemental loads)
207  const Vector &getResistingForce(void) const;
208  const Vector &getResistingForceIncInertia(void) const;
209 
210  // public methods for element output
211  int sendSelf(Communicator &);
212  int recvSelf(const Communicator &);
213 
214  Response *setResponse(const std::vector<std::string> &argv, Information &eleInformation);
215  int getResponse(int responseID, Information &eleInformation);
216 
217  int setParameter(const std::vector<std::string> &argv, Parameter &param);
218  };
219 } // end of XC namespace
220 #endif // ASDShellQ4_h
int sendData(Communicator &)
Send members through the communicator argument.
Definition: ASDShellQ4.cpp:981
Base class for force deformation section models.
Definition: SectionForceDeformation.h:88
Float vector abstraction.
Definition: Vector.h:94
void zeroLoad(void)
Zeroes the loads over the element.
Definition: ASDShellQ4.cpp:910
int sendSelf(Communicator &)
Send the object.
Definition: ASDShellQ4.cpp:1031
Information about an element.
Definition: Information.h:81
const Vector & getResistingForceIncInertia(void) const
Returns the resisting force vector including inertia forces.
Definition: ASDShellQ4.cpp:953
Communication parameters between processes.
Definition: Communicator.h:66
Base class response objects.
Definition: Response.h:81
int getNumDOF(void) const
return the number of DOF associated with the element.
Definition: ASDShellQ4.cpp:777
const Vector & getResistingForce(void) const
Returns the resisting force vector for the element.
Definition: ASDShellQ4.cpp:944
ASDShellQ4 & operator=(const ASDShellQ4 &)
Assignment operator.
Definition: ASDShellQ4.cpp:664
const Matrix & getTangentStiff(void) const
Return the tangent stiffness matrix.
Definition: ASDShellQ4.cpp:827
This class represent the local coordinate system of any element whose geometry is a 4-node Quadrilate...
Definition: ASDShellQ4LocalCoordinateSystem.h:41
int revertToStart(void)
Reverts the element to its initial state.
Definition: ASDShellQ4.cpp:807
void alive(void)
Reactivates the element.
Definition: ASDShellQ4.cpp:896
Base class for 4 node quads.
Definition: QuadBase4N.h:45
Base class for the finite elements.
Definition: Element.h:112
Response * setResponse(const std::vector< std::string > &argv, Information &eleInformation)
setResponse() is a method invoked to determine if the element will respond to a request for a certain...
Definition: ASDShellQ4.cpp:1064
int recvData(const Communicator &)
Receives members through the communicator argument.
Definition: ASDShellQ4.cpp:1006
int update(void)
Updates the element state.
Definition: ASDShellQ4.cpp:819
int revertToLastCommit(void)
Revert to the last committed state.
Definition: ASDShellQ4.cpp:794
Element * getCopy(void) const
Virtual constructor.
Definition: ASDShellQ4.cpp:641
int commitState(void)
Commit the current element state.
Definition: ASDShellQ4.cpp:780
int getResponse(int responseID, Information &eleInformation)
Obtain information from an analysis.
Definition: ASDShellQ4.cpp:1178
int setParameter(const std::vector< std::string > &argv, Parameter &param)
Sets the value param to the parameter argv.
Definition: ASDShellQ4.cpp:1229
Definition: ASDShellQ4.h:120
Open source finite element program for structural analysis.
Definition: ContinuaReprComponent.h:35
ASDShellQ4(int tag=0, bool corotational=true)
Constructor.
Definition: ASDShellQ4.cpp:613
Matrix of floats.
Definition: Matrix.h:111
Parameter.
Definition: Parameter.h:68
const Matrix & getMass(void) const
Returns the mass matrix.
Definition: ASDShellQ4.cpp:845
void setDomain(Domain *theDomain)
Sets the domain for the element.
Definition: ASDShellQ4.cpp:683
Base class for loads over elements.
Definition: ElementalLoad.h:79
This class represents a basic (linear) coordinate transformation that can be used by any element whos...
Definition: ASDShellQ4Transformation.h:74
Domain (mesh and boundary conditions) of the finite element model.
Definition: Domain.h:117
int recvSelf(const Communicator &)
Receive the object.
Definition: ASDShellQ4.cpp:1045