mlpack
Public Member Functions | List of all members
mlpack::adaboost::AdaBoost< WeakLearnerType, MatType > Class Template Reference

The AdaBoost class. More...

#include <adaboost.hpp>

Public Member Functions

 AdaBoost (const MatType &data, const arma::Row< size_t > &labels, const size_t numClasses, const WeakLearnerType &other, const size_t iterations=100, const double tolerance=1e-6)
 Constructor. More...
 
 AdaBoost (const double tolerance=1e-6)
 Create the AdaBoost object without training. More...
 
double Tolerance () const
 Get the tolerance for stopping the optimization during training.
 
double & Tolerance ()
 Modify the tolerance for stopping the optimization during training.
 
size_t NumClasses () const
 Get the number of classes this model is trained on.
 
size_t WeakLearners () const
 Get the number of weak learners in the model.
 
double Alpha (const size_t i) const
 Get the weights for the given weak learner.
 
double & Alpha (const size_t i)
 Modify the weight for the given weak learner (be careful!).
 
const WeakLearnerType & WeakLearner (const size_t i) const
 Get the given weak learner.
 
WeakLearnerType & WeakLearner (const size_t i)
 Modify the given weak learner (be careful!).
 
double Train (const MatType &data, const arma::Row< size_t > &labels, const size_t numClasses, const WeakLearnerType &learner, const size_t iterations=100, const double tolerance=1e-6)
 Train AdaBoost on the given dataset. More...
 
void Classify (const MatType &test, arma::Row< size_t > &predictedLabels, arma::mat &probabilities)
 Classify the given test points. More...
 
void Classify (const MatType &test, arma::Row< size_t > &predictedLabels)
 Classify the given test points. More...
 
template<typename Archive >
void serialize (Archive &ar, const uint32_t)
 Serialize the AdaBoost model.
 

Detailed Description

template<typename WeakLearnerType = mlpack::perceptron::Perceptron<>, typename MatType = arma::mat>
class mlpack::adaboost::AdaBoost< WeakLearnerType, MatType >

The AdaBoost class.

AdaBoost is a boosting algorithm, meaning that it combines an ensemble of weak learners to produce a strong learner. For more information on AdaBoost, see the following paper:

@article{schapire1999improved,
author = {Schapire, Robert E. and Singer, Yoram},
title = {Improved Boosting Algorithms Using Confidence-rated Predictions},
journal = {Machine Learning},
volume = {37},
number = {3},
month = dec,
year = {1999},
issn = {0885-6125},
pages = {297--336},
}

This class is general, and can be used with any type of weak learner, so long as the learner implements the following functions:

// A boosting constructor, which learns using the training parameters of the
// given other WeakLearner, but uses the given instance weights for training.
const MatType& data,
const arma::Row<size_t>& labels,
const arma::rowvec& weights);
// Given the test points, classify them and output predictions into
// predictedLabels.
void Classify(const MatType& data, arma::Row<size_t>& predictedLabels);

For more information on and examples of weak learners, see perceptron::Perceptron<> and tree::ID3DecisionStump.

Template Parameters
MatTypeData matrix type (i.e. arma::mat or arma::sp_mat).
WeakLearnerTypeType of weak learner to use.

Constructor & Destructor Documentation

◆ AdaBoost() [1/2]

template<typename WeakLearnerType, typename MatType>
mlpack::adaboost::AdaBoost< WeakLearnerType, MatType >::AdaBoost ( const MatType &  data,
const arma::Row< size_t > &  labels,
const size_t  numClasses,
const WeakLearnerType &  other,
const size_t  iterations = 100,
const double  tol = 1e-6 
)

Constructor.

This runs the AdaBoost.MH algorithm to provide a trained boosting model. This constructor takes an already-initialized weak learner; all other weak learners will learn with the same parameters as the given weak learner.

Parameters
dataInput data.
labelsCorresponding labels.
numClassesThe number of classes.
iterationsNumber of boosting rounds.
toleranceThe tolerance for change in values of rt.
otherWeak learner that has already been initialized.

Currently runs the AdaBoost.MH algorithm.

Parameters
dataInput data
labelsCorresponding labels
iterationsNumber of boosting rounds
tolTolerance for termination of Adaboost.MH.
otherWeak Learner, which has been initialized already.

◆ AdaBoost() [2/2]

template<typename WeakLearnerType, typename MatType>
mlpack::adaboost::AdaBoost< WeakLearnerType, MatType >::AdaBoost ( const double  tolerance = 1e-6)

Create the AdaBoost object without training.

Be sure to call Train() before calling Classify()!

Member Function Documentation

◆ Classify() [1/2]

template<typename WeakLearnerType , typename MatType>
void mlpack::adaboost::AdaBoost< WeakLearnerType, MatType >::Classify ( const MatType &  test,
arma::Row< size_t > &  predictedLabels,
arma::mat &  probabilities 
)

Classify the given test points.

Parameters
testTesting data.
predictedLabelsVector in which the predicted labels of the test set will be stored.
probabilitiesmatrix to store the predicted class probabilities for each point in the test set.

◆ Classify() [2/2]

template<typename WeakLearnerType , typename MatType>
void mlpack::adaboost::AdaBoost< WeakLearnerType, MatType >::Classify ( const MatType &  test,
arma::Row< size_t > &  predictedLabels 
)

Classify the given test points.

Parameters
testTesting data.
predictedLabelsVector in which the predicted labels of the test set will be stored.

◆ Train()

template<typename WeakLearnerType, typename MatType>
double mlpack::adaboost::AdaBoost< WeakLearnerType, MatType >::Train ( const MatType &  data,
const arma::Row< size_t > &  labels,
const size_t  numClasses,
const WeakLearnerType &  learner,
const size_t  iterations = 100,
const double  tolerance = 1e-6 
)

Train AdaBoost on the given dataset.

This method takes an initialized WeakLearnerType; the parameters for this weak learner will be used to train each of the weak learners during AdaBoost training. Note that this will completely overwrite any model that has already been trained with this object.

Parameters
dataDataset to train on.
labelsLabels for each point in the dataset.
numClassesThe number of classes.
learnerLearner to use for training.
iterationsNumber of boosting rounds.
toleranceThe tolerance for change in values of rt.
Returns
The upper bound for training error.

The documentation for this class was generated from the following files: