|
| CFType (const size_t numUsersForSimilarity=5, const size_t rank=0) |
| Initialize the CFType object without performing any factorization. More...
|
|
template<typename MatType > |
| CFType (const MatType &data, const DecompositionPolicy &decomposition=DecompositionPolicy(), const size_t numUsersForSimilarity=5, const size_t rank=0, const size_t maxIterations=1000, const double minResidue=1e-5, const bool mit=false) |
| Initialize the CFType object using any decomposition method, immediately factorizing the given data to create a model. More...
|
|
void | Train (const arma::mat &data, const DecompositionPolicy &decomposition, const size_t maxIterations=1000, const double minResidue=1e-5, const bool mit=false) |
| Train the CFType model (i.e. More...
|
|
void | Train (const arma::sp_mat &data, const DecompositionPolicy &decomposition, const size_t maxIterations=1000, const double minResidue=1e-5, const bool mit=false) |
| Train the CFType model (i.e. More...
|
|
void | NumUsersForSimilarity (const size_t num) |
| Sets number of users for calculating similarity.
|
|
size_t | NumUsersForSimilarity () const |
| Gets number of users for calculating similarity.
|
|
void | Rank (const size_t rankValue) |
| Sets rank parameter for matrix factorization.
|
|
size_t | Rank () const |
| Gets rank parameter for matrix factorization.
|
|
const DecompositionPolicy & | Decomposition () const |
| Gets decomposition object.
|
|
const arma::sp_mat & | CleanedData () const |
| Get the cleaned data matrix.
|
|
const NormalizationType & | Normalization () const |
| Get the normalization object.
|
|
template<typename NeighborSearchPolicy = EuclideanSearch, typename InterpolationPolicy = AverageInterpolation> |
void | GetRecommendations (const size_t numRecs, arma::Mat< size_t > &recommendations) |
| Generates the given number of recommendations for all users. More...
|
|
template<typename NeighborSearchPolicy = EuclideanSearch, typename InterpolationPolicy = AverageInterpolation> |
void | GetRecommendations (const size_t numRecs, arma::Mat< size_t > &recommendations, const arma::Col< size_t > &users) |
| Generates the given number of recommendations for the specified users. More...
|
|
template<typename NeighborSearchPolicy = EuclideanSearch, typename InterpolationPolicy = AverageInterpolation> |
double | Predict (const size_t user, const size_t item) const |
| Predict the rating of an item by a particular user. More...
|
|
template<typename NeighborSearchPolicy = EuclideanSearch, typename InterpolationPolicy = AverageInterpolation> |
void | Predict (const arma::Mat< size_t > &combinations, arma::vec &predictions) const |
| Predict ratings for each user-item combination in the given coordinate list matrix. More...
|
|
template<typename Archive > |
void | serialize (Archive &ar, const uint32_t) |
| Serialize the CFType model to the given archive. More...
|
|
template<typename DecompositionPolicy = NMFPolicy, typename NormalizationType = NoNormalization>
class mlpack::cf::CFType< DecompositionPolicy, NormalizationType >
This class implements Collaborative Filtering (CF).
This implementation presently supports Alternating Least Squares (ALS) for collaborative filtering.
A simple example of how to run Collaborative Filtering is shown below.
extern arma::mat data;
extern arma::Col<size_t> users;
arma::Mat<size_t> recommendations;
CFType<> cf(data);
cf.GetRecommendations(10, recommendations);
cf.GetRecommendations(10, recommendations, users);
The data matrix is a (user, item, rating) table. Each column in the matrix should have three rows. The first represents the user; the second represents the item; and the third represents the rating. The user and item, while they are in a matrix that holds doubles, should hold integer (or size_t) values. The user and item indices are assumed to start at 0.
- Template Parameters
-
DecompositionPolicy | The policy used to decompose the rating matrix. It also provides methods to compute prediction and neighborhood. |
NormalizationType | The type of normalization performed on raw data. Data is normalized before calling Train() method. Predicted rating is denormalized before return. |
template<typename DecompositionPolicy, typename NormalizationType >
template<typename MatType >
mlpack::cf::CFType< DecompositionPolicy, NormalizationType >::CFType |
( |
const MatType & |
data, |
|
|
const DecompositionPolicy & |
decomposition = DecompositionPolicy() , |
|
|
const size_t |
numUsersForSimilarity = 5 , |
|
|
const size_t |
rank = 0 , |
|
|
const size_t |
maxIterations = 1000 , |
|
|
const double |
minResidue = 1e-5 , |
|
|
const bool |
mit = false |
|
) |
| |
Initialize the CFType object using any decomposition method, immediately factorizing the given data to create a model.
Construct the CF object using an instantiated decomposition policy.
There are parameters that can be set; default values are provided for each of them. If the rank is left unset (or is set to 0), a simple density-based heuristic will be used to choose a rank.
The provided dataset can be a coordinate list; that is, a 3-row matrix where each column corresponds to a (user, item, rating) entry in the matrix or a sparse matrix representing (user, item) table.
- Template Parameters
-
MatType | The type of input matrix, which is expected to be either arma::mat (table of (user, item, rating)) or arma::sp_mat (sparse rating matrix where row is item and column is user). |
- Parameters
-
data | Data matrix: dense matrix (coordinate lists) or sparse matrix(cleaned). |
decomposition | Instantiated DecompositionPolicy object. |
numUsersForSimilarity | Size of the neighborhood. |
rank | Rank parameter for matrix factorization. |
maxIterations | Maximum number of iterations. |
minResidue | Residue required to terminate. |
mit | Whether to terminate only when maxIterations is reached. |
template<typename DecompositionPolicy , typename NormalizationType >
template<typename NeighborSearchPolicy , typename InterpolationPolicy >
void mlpack::cf::CFType< DecompositionPolicy, NormalizationType >::Predict |
( |
const arma::Mat< size_t > & |
combinations, |
|
|
arma::vec & |
predictions |
|
) |
| const |
Predict ratings for each user-item combination in the given coordinate list matrix.
The matrix 'combinations' should have two rows and number of columns equal to the number of desired predictions. The first element of each column corresponds to the user index, and the second element of each column corresponds to the item index. The output vector 'predictions' will have length equal to combinations.n_cols, and predictions[i] will be equal to the prediction for the user/item combination in combinations.col(i).
- Template Parameters
-
NeighborSearchPolicy | The policy used to search neighbors of query set in referece set. |
InterpolationPolicy | The policy used to calculate interpolation weights. |
- Parameters
-
combinations | User/item combinations to predict. |
predictions | Predicted ratings for each user/item combination. |