mlpack
Public Member Functions | List of all members
mlpack::distribution::RegressionDistribution Class Reference

A class that represents a univariate conditionally Gaussian distribution. More...

#include <regression_distribution.hpp>

Public Member Functions

 RegressionDistribution ()
 Default constructor, which creates a Gaussian with zero dimension.
 
mlpack_deprecated RegressionDistribution (const arma::mat &predictors, const arma::vec &responses)
 Create a Conditional Gaussian distribution with conditional mean function obtained by running RegressionFunction on predictors, responses. More...
 
 RegressionDistribution (const arma::mat &predictors, const arma::rowvec &responses)
 Create a Conditional Gaussian distribution with conditional mean function obtained by running RegressionFunction on predictors, responses. More...
 
template<typename Archive >
void serialize (Archive &ar, const uint32_t)
 Serialize the distribution.
 
const regression::LinearRegressionRf () const
 Return regression function.
 
regression::LinearRegressionRf ()
 Modify regression function.
 
const GaussianDistributionErr () const
 Return error distribution.
 
GaussianDistributionErr ()
 Modify error distribution.
 
void Train (const arma::mat &observations)
 Estimate the Gaussian distribution directly from the given observations. More...
 
mlpack_deprecated void Train (const arma::mat &observations, const arma::vec &weights)
 Estimate parameters using provided observation weights. More...
 
void Train (const arma::mat &observations, const arma::rowvec &weights)
 Estimate parameters using provided observation weights. More...
 
double Probability (const arma::vec &observation) const
 Evaluate probability density function of given observation. More...
 
double LogProbability (const arma::vec &observation) const
 Evaluate log probability density function of given observation. More...
 
mlpack_deprecated void Predict (const arma::mat &points, arma::vec &predictions) const
 Calculate y_i for each data point in points. More...
 
void Predict (const arma::mat &points, arma::rowvec &predictions) const
 Calculate y_i for each data point in points. More...
 
const arma::vec & Parameters () const
 Return the parameters (the b vector).
 
size_t Dimensionality () const
 Return the dimensionality.
 

Detailed Description

A class that represents a univariate conditionally Gaussian distribution.

Can be used as an emission distribution with the hmm class to implement HMM regression (HMMR) as described in https://www.ima.umn.edu/preprints/January1994/1195.pdf The hmm observations should have the dependent variable in the first row, with the independent variables in the other rows.

Constructor & Destructor Documentation

◆ RegressionDistribution() [1/2]

mlpack_deprecated mlpack::distribution::RegressionDistribution::RegressionDistribution ( const arma::mat &  predictors,
const arma::vec &  responses 
)
inline

Create a Conditional Gaussian distribution with conditional mean function obtained by running RegressionFunction on predictors, responses.

Parameters
predictorsMatrix of predictors (X).
responsesVector of responses (y).

◆ RegressionDistribution() [2/2]

mlpack::distribution::RegressionDistribution::RegressionDistribution ( const arma::mat &  predictors,
const arma::rowvec &  responses 
)
inline

Create a Conditional Gaussian distribution with conditional mean function obtained by running RegressionFunction on predictors, responses.

Parameters
predictorsMatrix of predictors (X).
responsesVector of responses (y).

Member Function Documentation

◆ LogProbability()

double mlpack::distribution::RegressionDistribution::LogProbability ( const arma::vec &  observation) const
inline

Evaluate log probability density function of given observation.

Parameters
observationPoint to evaluate log probability at.

◆ Predict() [1/2]

void RegressionDistribution::Predict ( const arma::mat &  points,
arma::vec &  predictions 
) const

Calculate y_i for each data point in points.

Parameters
pointsThe data points to calculate with.
predictionsY, will contain calculated values on completion.

◆ Predict() [2/2]

void RegressionDistribution::Predict ( const arma::mat &  points,
arma::rowvec &  predictions 
) const

Calculate y_i for each data point in points.

Parameters
pointsThe data points to calculate with.
predictionsY, will contain calculated values on completion.

◆ Probability()

double RegressionDistribution::Probability ( const arma::vec &  observation) const

Evaluate probability density function of given observation.

Parameters
observationPoint to evaluate probability at.

◆ Train() [1/3]

void RegressionDistribution::Train ( const arma::mat &  observations)

Estimate the Gaussian distribution directly from the given observations.

Estimate parameters using provided observation weights.

Parameters
observationsList of observations.

◆ Train() [2/3]

void RegressionDistribution::Train ( const arma::mat &  observations,
const arma::vec &  weights 
)

Estimate parameters using provided observation weights.

Parameters
observationsList of observations.
weightsProbability that given observation is from distribution.
weightsProbability that given observation is from distribution.

◆ Train() [3/3]

void RegressionDistribution::Train ( const arma::mat &  observations,
const arma::rowvec &  weights 
)

Estimate parameters using provided observation weights.

Parameters
observationsList of observations.
weightsProbability that given observation is from distribution.

The documentation for this class was generated from the following files: