A class that represents a univariate conditionally Gaussian distribution.
More...
#include <regression_distribution.hpp>
|
| RegressionDistribution () |
| Default constructor, which creates a Gaussian with zero dimension.
|
|
mlpack_deprecated | RegressionDistribution (const arma::mat &predictors, const arma::vec &responses) |
| Create a Conditional Gaussian distribution with conditional mean function obtained by running RegressionFunction on predictors, responses. More...
|
|
| RegressionDistribution (const arma::mat &predictors, const arma::rowvec &responses) |
| Create a Conditional Gaussian distribution with conditional mean function obtained by running RegressionFunction on predictors, responses. More...
|
|
template<typename Archive > |
void | serialize (Archive &ar, const uint32_t) |
| Serialize the distribution.
|
|
const regression::LinearRegression & | Rf () const |
| Return regression function.
|
|
regression::LinearRegression & | Rf () |
| Modify regression function.
|
|
const GaussianDistribution & | Err () const |
| Return error distribution.
|
|
GaussianDistribution & | Err () |
| Modify error distribution.
|
|
void | Train (const arma::mat &observations) |
| Estimate the Gaussian distribution directly from the given observations. More...
|
|
mlpack_deprecated void | Train (const arma::mat &observations, const arma::vec &weights) |
| Estimate parameters using provided observation weights. More...
|
|
void | Train (const arma::mat &observations, const arma::rowvec &weights) |
| Estimate parameters using provided observation weights. More...
|
|
double | Probability (const arma::vec &observation) const |
| Evaluate probability density function of given observation. More...
|
|
double | LogProbability (const arma::vec &observation) const |
| Evaluate log probability density function of given observation. More...
|
|
mlpack_deprecated void | Predict (const arma::mat &points, arma::vec &predictions) const |
| Calculate y_i for each data point in points. More...
|
|
void | Predict (const arma::mat &points, arma::rowvec &predictions) const |
| Calculate y_i for each data point in points. More...
|
|
const arma::vec & | Parameters () const |
| Return the parameters (the b vector).
|
|
size_t | Dimensionality () const |
| Return the dimensionality.
|
|
A class that represents a univariate conditionally Gaussian distribution.
Can be used as an emission distribution with the hmm class to implement HMM regression (HMMR) as described in https://www.ima.umn.edu/preprints/January1994/1195.pdf The hmm observations should have the dependent variable in the first row, with the independent variables in the other rows.
◆ RegressionDistribution() [1/2]
mlpack_deprecated mlpack::distribution::RegressionDistribution::RegressionDistribution |
( |
const arma::mat & |
predictors, |
|
|
const arma::vec & |
responses |
|
) |
| |
|
inline |
Create a Conditional Gaussian distribution with conditional mean function obtained by running RegressionFunction on predictors, responses.
- Parameters
-
predictors | Matrix of predictors (X). |
responses | Vector of responses (y). |
◆ RegressionDistribution() [2/2]
mlpack::distribution::RegressionDistribution::RegressionDistribution |
( |
const arma::mat & |
predictors, |
|
|
const arma::rowvec & |
responses |
|
) |
| |
|
inline |
Create a Conditional Gaussian distribution with conditional mean function obtained by running RegressionFunction on predictors, responses.
- Parameters
-
predictors | Matrix of predictors (X). |
responses | Vector of responses (y). |
◆ LogProbability()
double mlpack::distribution::RegressionDistribution::LogProbability |
( |
const arma::vec & |
observation | ) |
const |
|
inline |
Evaluate log probability density function of given observation.
- Parameters
-
observation | Point to evaluate log probability at. |
◆ Predict() [1/2]
void RegressionDistribution::Predict |
( |
const arma::mat & |
points, |
|
|
arma::vec & |
predictions |
|
) |
| const |
Calculate y_i for each data point in points.
- Parameters
-
points | The data points to calculate with. |
predictions | Y, will contain calculated values on completion. |
◆ Predict() [2/2]
void RegressionDistribution::Predict |
( |
const arma::mat & |
points, |
|
|
arma::rowvec & |
predictions |
|
) |
| const |
Calculate y_i for each data point in points.
- Parameters
-
points | The data points to calculate with. |
predictions | Y, will contain calculated values on completion. |
◆ Probability()
double RegressionDistribution::Probability |
( |
const arma::vec & |
observation | ) |
const |
Evaluate probability density function of given observation.
- Parameters
-
observation | Point to evaluate probability at. |
◆ Train() [1/3]
void RegressionDistribution::Train |
( |
const arma::mat & |
observations | ) |
|
Estimate the Gaussian distribution directly from the given observations.
Estimate parameters using provided observation weights.
- Parameters
-
observations | List of observations. |
◆ Train() [2/3]
void RegressionDistribution::Train |
( |
const arma::mat & |
observations, |
|
|
const arma::vec & |
weights |
|
) |
| |
Estimate parameters using provided observation weights.
- Parameters
-
observations | List of observations. |
weights | Probability that given observation is from distribution. |
weights | Probability that given observation is from distribution. |
◆ Train() [3/3]
void RegressionDistribution::Train |
( |
const arma::mat & |
observations, |
|
|
const arma::rowvec & |
weights |
|
) |
| |
Estimate parameters using provided observation weights.
- Parameters
-
observations | List of observations. |
weights | Probability that given observation is from distribution. |
The documentation for this class was generated from the following files: