mlpack
Public Member Functions | List of all members
mlpack::kmeans::KMeans< MetricType, InitialPartitionPolicy, EmptyClusterPolicy, LloydStepType, MatType > Class Template Reference

This class implements K-Means clustering, using a variety of possible implementations of Lloyd's algorithm. More...

#include <kmeans.hpp>

Public Member Functions

 KMeans (const size_t maxIterations=1000, const MetricType metric=MetricType(), const InitialPartitionPolicy partitioner=InitialPartitionPolicy(), const EmptyClusterPolicy emptyClusterAction=EmptyClusterPolicy())
 Create a K-Means object and (optionally) set the parameters which K-Means will be run with. More...
 
void Cluster (const MatType &data, const size_t clusters, arma::Row< size_t > &assignments, const bool initialGuess=false)
 Perform k-means clustering on the data, returning a list of cluster assignments. More...
 
void Cluster (const MatType &data, size_t clusters, arma::mat &centroids, const bool initialGuess=false)
 Perform k-means clustering on the data, returning the centroids of each cluster in the centroids matrix. More...
 
void Cluster (const MatType &data, const size_t clusters, arma::Row< size_t > &assignments, arma::mat &centroids, const bool initialAssignmentGuess=false, const bool initialCentroidGuess=false)
 Perform k-means clustering on the data, returning a list of cluster assignments and also the centroids of each cluster. More...
 
size_t MaxIterations () const
 Get the maximum number of iterations.
 
size_t & MaxIterations ()
 Set the maximum number of iterations.
 
const MetricType & Metric () const
 Get the distance metric.
 
MetricType & Metric ()
 Modify the distance metric.
 
const InitialPartitionPolicy & Partitioner () const
 Get the initial partitioning policy.
 
InitialPartitionPolicy & Partitioner ()
 Modify the initial partitioning policy.
 
const EmptyClusterPolicy & EmptyClusterAction () const
 Get the empty cluster policy.
 
EmptyClusterPolicy & EmptyClusterAction ()
 Modify the empty cluster policy.
 
template<typename Archive >
void serialize (Archive &ar, const uint32_t version)
 Serialize the k-means object.
 

Detailed Description

template<typename MetricType = metric::EuclideanDistance, typename InitialPartitionPolicy = SampleInitialization, typename EmptyClusterPolicy = MaxVarianceNewCluster, template< class, class > class LloydStepType = NaiveKMeans, typename MatType = arma::mat>
class mlpack::kmeans::KMeans< MetricType, InitialPartitionPolicy, EmptyClusterPolicy, LloydStepType, MatType >

This class implements K-Means clustering, using a variety of possible implementations of Lloyd's algorithm.

Four template parameters can (optionally) be supplied: the distance metric to use, the policy for how to find the initial partition of the data, the actions to be taken when an empty cluster is encountered, and the implementation of a single Lloyd step to use.

A simple example of how to run K-Means clustering is shown below.

extern arma::mat data; // Dataset we want to run K-Means on.
arma::Row<size_t> assignments; // Cluster assignments.
arma::mat centroids; // Cluster centroids.
KMeans<> k; // Default options.
k.Cluster(data, 3, assignments, centroids); // 3 clusters.
// Cluster using the Manhattan distance, 100 iterations maximum, saving only
// the centroids.
KMeans<metric::ManhattanDistance> k(100);
k.Cluster(data, 6, centroids); // 6 clusters.
Template Parameters
MetricTypeThe distance metric to use for this KMeans; see metric::LMetric for an example.
InitialPartitionPolicyInitial partitioning policy; must implement a default constructor and either 'void Cluster(const arma::mat&, const size_t, arma::Row<size_t>&)' or 'void Cluster(const arma::mat&, const size_t, arma::mat&)'.
EmptyClusterPolicyPolicy for what to do on an empty cluster; must implement a default constructor and 'void EmptyCluster(const arma::mat& data, const size_t emptyCluster, const arma::mat& oldCentroids, arma::mat& newCentroids, arma::Col<size_t>& counts, MetricType& metric, const size_t iteration)'.
LloydStepTypeImplementation of single Lloyd step to use.
See also
RandomPartition, SampleInitialization, RefinedStart, AllowEmptyClusters, MaxVarianceNewCluster, NaiveKMeans, ElkanKMeans

Constructor & Destructor Documentation

◆ KMeans()

template<typename MetricType , typename InitialPartitionPolicy , typename EmptyClusterPolicy , template< class, class > class LloydStepType, typename MatType >
mlpack::kmeans::KMeans< MetricType, InitialPartitionPolicy, EmptyClusterPolicy, LloydStepType, MatType >::KMeans ( const size_t  maxIterations = 1000,
const MetricType  metric = MetricType(),
const InitialPartitionPolicy  partitioner = InitialPartitionPolicy(),
const EmptyClusterPolicy  emptyClusterAction = EmptyClusterPolicy() 
)

Create a K-Means object and (optionally) set the parameters which K-Means will be run with.

Construct the K-Means object.

Parameters
maxIterationsMaximum number of iterations allowed before giving up (0 is valid, but the algorithm may never terminate).
metricOptional MetricType object; for when the metric has state it needs to store.
partitionerOptional InitialPartitionPolicy object; for when a specially initialized partitioning policy is required.
emptyClusterActionOptional EmptyClusterPolicy object; for when a specially initialized empty cluster policy is required.

Member Function Documentation

◆ Cluster() [1/3]

template<typename MetricType , typename InitialPartitionPolicy , typename EmptyClusterPolicy , template< class, class > class LloydStepType, typename MatType >
void mlpack::kmeans::KMeans< MetricType, InitialPartitionPolicy, EmptyClusterPolicy, LloydStepType, MatType >::Cluster ( const MatType &  data,
const size_t  clusters,
arma::Row< size_t > &  assignments,
const bool  initialGuess = false 
)
inline

Perform k-means clustering on the data, returning a list of cluster assignments.

Optionally, the vector of assignments can be set to an initial guess of the cluster assignments; to do this, set initialGuess to true.

Template Parameters
MatTypeType of matrix (arma::mat or arma::sp_mat).
Parameters
dataDataset to cluster.
clustersNumber of clusters to compute.
assignmentsVector to store cluster assignments in.
initialGuessIf true, then it is assumed that assignments has a list of initial cluster assignments.

This just forward to the other function, which returns the centroids too. If this is properly inlined, there shouldn't be any performance penalty whatsoever.

◆ Cluster() [2/3]

template<typename MetricType , typename InitialPartitionPolicy , typename EmptyClusterPolicy , template< class, class > class LloydStepType, typename MatType >
void mlpack::kmeans::KMeans< MetricType, InitialPartitionPolicy, EmptyClusterPolicy, LloydStepType, MatType >::Cluster ( const MatType &  data,
size_t  clusters,
arma::mat &  centroids,
const bool  initialGuess = false 
)

Perform k-means clustering on the data, returning the centroids of each cluster in the centroids matrix.

Perform k-means clustering on the data, returning a list of cluster assignments and the centroids of each cluster.

Optionally, the initial centroids can be specified by filling the centroids matrix with the initial centroids and specifying initialGuess = true.

Template Parameters
MatTypeType of matrix (arma::mat or arma::sp_mat).
Parameters
dataDataset to cluster.
clustersNumber of clusters to compute.
centroidsMatrix in which centroids are stored.
initialGuessIf true, then it is assumed that centroids contains the initial cluster centroids.

◆ Cluster() [3/3]

template<typename MetricType , typename InitialPartitionPolicy , typename EmptyClusterPolicy , template< class, class > class LloydStepType, typename MatType >
void mlpack::kmeans::KMeans< MetricType, InitialPartitionPolicy, EmptyClusterPolicy, LloydStepType, MatType >::Cluster ( const MatType &  data,
const size_t  clusters,
arma::Row< size_t > &  assignments,
arma::mat &  centroids,
const bool  initialAssignmentGuess = false,
const bool  initialCentroidGuess = false 
)

Perform k-means clustering on the data, returning a list of cluster assignments and also the centroids of each cluster.

Perform k-means clustering on the data, returning a list of cluster assignments and the centroids of each cluster.

Optionally, the vector of assignments can be set to an initial guess of the cluster assignments; to do this, set initialAssignmentGuess to true. Another way to set initial cluster guesses is to fill the centroids matrix with the centroid guesses, and then set initialCentroidGuess to true. initialAssignmentGuess supersedes initialCentroidGuess, so if both are set to true, the assignments vector is used.

Template Parameters
MatTypeType of matrix (arma::mat or arma::sp_mat).
Parameters
dataDataset to cluster.
clustersNumber of clusters to compute.
assignmentsVector to store cluster assignments in.
centroidsMatrix in which centroids are stored.
initialAssignmentGuessIf true, then it is assumed that assignments has a list of initial cluster assignments.
initialCentroidGuessIf true, then it is assumed that centroids contains the initial centroids of each cluster.

The documentation for this class was generated from the following files: