mlpack
Public Member Functions | List of all members
mlpack::perceptron::Perceptron< LearnPolicy, WeightInitializationPolicy, MatType > Class Template Reference

This class implements a simple perceptron (i.e., a single layer neural network). More...

#include <perceptron.hpp>

Public Member Functions

 Perceptron (const size_t numClasses=0, const size_t dimensionality=0, const size_t maxIterations=1000)
 Constructor: create the perceptron with the given number of classes and initialize the weight matrix, but do not perform any training. More...
 
 Perceptron (const MatType &data, const arma::Row< size_t > &labels, const size_t numClasses, const size_t maxIterations=1000)
 Constructor: constructs the perceptron by building the weights matrix, which is later used in classification. More...
 
 Perceptron (const Perceptron &other, const MatType &data, const arma::Row< size_t > &labels, const size_t numClasses, const arma::rowvec &instanceWeights)
 Alternate constructor which copies parameters from an already initiated perceptron. More...
 
void Train (const MatType &data, const arma::Row< size_t > &labels, const size_t numClasses, const arma::rowvec &instanceWeights=arma::rowvec())
 Train the perceptron on the given data for up to the maximum number of iterations (specified in the constructor or through MaxIterations()). More...
 
void Classify (const MatType &test, arma::Row< size_t > &predictedLabels)
 Classification function. More...
 
template<typename Archive >
void serialize (Archive &ar, const uint32_t)
 Serialize the perceptron.
 
size_t MaxIterations () const
 Get the maximum number of iterations.
 
size_t & MaxIterations ()
 Modify the maximum number of iterations.
 
size_t NumClasses () const
 Get the number of classes this perceptron has been trained for.
 
const arma::mat & Weights () const
 Get the weight matrix.
 
arma::mat & Weights ()
 Modify the weight matrix. You had better know what you are doing!
 
const arma::vec & Biases () const
 Get the biases.
 
arma::vec & Biases ()
 Modify the biases. You had better know what you are doing!
 

Detailed Description

template<typename LearnPolicy = SimpleWeightUpdate, typename WeightInitializationPolicy = ZeroInitialization, typename MatType = arma::mat>
class mlpack::perceptron::Perceptron< LearnPolicy, WeightInitializationPolicy, MatType >

This class implements a simple perceptron (i.e., a single layer neural network).

It converges if the supplied training dataset is linearly separable.

Template Parameters
LearnPolicyOptions of SimpleWeightUpdate and GradientDescent.
WeightInitializationPolicyOption of ZeroInitialization and RandomInitialization.

Constructor & Destructor Documentation

◆ Perceptron() [1/3]

template<typename LearnPolicy , typename WeightInitializationPolicy , typename MatType >
mlpack::perceptron::Perceptron< LearnPolicy, WeightInitializationPolicy, MatType >::Perceptron ( const size_t  numClasses = 0,
const size_t  dimensionality = 0,
const size_t  maxIterations = 1000 
)

Constructor: create the perceptron with the given number of classes and initialize the weight matrix, but do not perform any training.

Construct the perceptron with the given number of classes and maximum number of iterations.

(Call the Train() function to perform training.)

Parameters
numClassesNumber of classes in the dataset.
dimensionalityDimensionality of the dataset.
maxIterationsMaximum number of iterations for the perceptron learning algorithm.

◆ Perceptron() [2/3]

template<typename LearnPolicy , typename WeightInitializationPolicy , typename MatType >
mlpack::perceptron::Perceptron< LearnPolicy, WeightInitializationPolicy, MatType >::Perceptron ( const MatType &  data,
const arma::Row< size_t > &  labels,
const size_t  numClasses,
const size_t  maxIterations = 1000 
)

Constructor: constructs the perceptron by building the weights matrix, which is later used in classification.

Constructor - constructs the perceptron.

The number of classes should be specified separately, and the labels vector should contain values in the range [0, numClasses - 1]. The data::NormalizeLabels() function can be used if the labels vector does not contain values in the required range.

Parameters
dataInput, training data.
labelsLabels of dataset.
numClassesNumber of classes in the dataset.
maxIterationsMaximum number of iterations for the perceptron learning algorithm.

Or rather, builds the weights matrix, which is later used in classification. It adds a bias input vector of 1 to the input data to take care of the bias weights.

Parameters
dataInput, training data.
labelsLabels of dataset.
maxIterationsMaximum number of iterations for the perceptron learning algorithm.

◆ Perceptron() [3/3]

template<typename LearnPolicy , typename WeightInitializationPolicy , typename MatType >
mlpack::perceptron::Perceptron< LearnPolicy, WeightInitializationPolicy, MatType >::Perceptron ( const Perceptron< LearnPolicy, WeightInitializationPolicy, MatType > &  other,
const MatType &  data,
const arma::Row< size_t > &  labels,
const size_t  numClasses,
const arma::rowvec &  instanceWeights 
)

Alternate constructor which copies parameters from an already initiated perceptron.

Parameters
otherThe other initiated Perceptron object from which we copy the values from.
dataThe data on which to train this Perceptron object on.
labelsThe labels of data.
numClassesNumber of classes in the data.
instanceWeightsWeight vector to use while training. For boosting purposes.
otherThe other initiated Perceptron object from which we copy the values from.
dataThe data on which to train this Perceptron object on.
instanceWeightsWeight vector to use while training. For boosting purposes.
labelsThe labels of data.

Member Function Documentation

◆ Classify()

template<typename LearnPolicy , typename WeightInitializationPolicy , typename MatType >
void mlpack::perceptron::Perceptron< LearnPolicy, WeightInitializationPolicy, MatType >::Classify ( const MatType &  test,
arma::Row< size_t > &  predictedLabels 
)

Classification function.

After training, use the weights matrix to classify test, and put the predicted classes in predictedLabels.

Parameters
testTesting data or data to classify.
predictedLabelsVector to store the predicted classes after classifying test.

◆ Train()

template<typename LearnPolicy , typename WeightInitializationPolicy , typename MatType >
void mlpack::perceptron::Perceptron< LearnPolicy, WeightInitializationPolicy, MatType >::Train ( const MatType &  data,
const arma::Row< size_t > &  labels,
const size_t  numClasses,
const arma::rowvec &  instanceWeights = arma::rowvec() 
)

Train the perceptron on the given data for up to the maximum number of iterations (specified in the constructor or through MaxIterations()).

Training function.

A single iteration corresponds to a single pass through the data, so if you want to pass through the dataset only once, set MaxIterations() to 1.

This training does not reset the model weights, so you can call Train() on multiple datasets sequentially.

Parameters
dataDataset on which training should be performed.
labelsLabels of the dataset.
numClassesNumber of classes in the data.
instanceWeightsCost matrix. Stores the cost of mispredicting instances. This is useful for boosting.

It trains on trainData using the cost matrix instanceWeights.

Parameters
dataData to train on.
labelsLabels of data.
instanceWeightsCost matrix. Stores the cost of mispredicting instances. This is useful for boosting.

The documentation for this class was generated from the following files: