mlpack
Public Member Functions | List of all members
mlpack::regression::LogisticRegressionFunction< MatType > Class Template Reference

The log-likelihood function for the logistic regression objective function. More...

#include <logistic_regression_function.hpp>

Public Member Functions

 LogisticRegressionFunction (const MatType &predictors, const arma::Row< size_t > &responses, const double lambda=0)
 Creates the LogisticRegressionFunction. More...
 
const double & Lambda () const
 Return the regularization parameter (lambda).
 
double & Lambda ()
 Modify the regularization parameter (lambda).
 
const MatType & Predictors () const
 Return the matrix of predictors.
 
const arma::Row< size_t > & Responses () const
 Return the vector of responses.
 
void Shuffle ()
 Shuffle the order of function visitation. More...
 
double Evaluate (const arma::mat &parameters) const
 Evaluate the logistic regression log-likelihood function with the given parameters. More...
 
double Evaluate (const arma::mat &parameters, const size_t begin, const size_t batchSize=1) const
 Evaluate the logistic regression log-likelihood function with the given parameters using the given batch size from the given point index. More...
 
void Gradient (const arma::mat &parameters, arma::mat &gradient) const
 Evaluate the gradient of the logistic regression log-likelihood function with the given parameters. More...
 
template<typename GradType >
void Gradient (const arma::mat &parameters, const size_t begin, GradType &gradient, const size_t batchSize=1) const
 Evaluate the gradient of the logistic regression log-likelihood function with the given parameters, for the given batch size from a given point in the dataset. More...
 
void PartialGradient (const arma::mat &parameters, const size_t j, arma::sp_mat &gradient) const
 Evaluate the gradient of the logistic regression log-likelihood function with the given parameters, and with respect to only one feature in the dataset. More...
 
template<typename GradType >
double EvaluateWithGradient (const arma::mat &parameters, GradType &gradient) const
 Evaluate the objective function and gradient of the logistic regression log-likelihood function simultaneously with the given parameters.
 
template<typename GradType >
double EvaluateWithGradient (const arma::mat &parameters, const size_t begin, GradType &gradient, const size_t batchSize=1) const
 Evaluate the objective function and gradient of the logistic regression log-likelihood function simultaneously with the given parameters, for the given batch size from a given point in the dataset.
 
size_t NumFunctions () const
 Return the number of separable functions (the number of predictor points).
 
size_t NumFeatures () const
 Return the number of features(add 1 for the intercept term).
 

Detailed Description

template<typename MatType = arma::mat>
class mlpack::regression::LogisticRegressionFunction< MatType >

The log-likelihood function for the logistic regression objective function.

This is used by various mlpack optimizers to train a logistic regression model.

Constructor & Destructor Documentation

◆ LogisticRegressionFunction()

template<typename MatType >
mlpack::regression::LogisticRegressionFunction< MatType >::LogisticRegressionFunction ( const MatType &  predictors,
const arma::Row< size_t > &  responses,
const double  lambda = 0 
)

Creates the LogisticRegressionFunction.

Parameters
predictorsThe matrix of data points.
responsesThe measured data for each point in predictors.
lambdaRegularization constant for ridge regression.

Member Function Documentation

◆ Evaluate() [1/2]

template<typename MatType >
double mlpack::regression::LogisticRegressionFunction< MatType >::Evaluate ( const arma::mat &  parameters) const

Evaluate the logistic regression log-likelihood function with the given parameters.

Evaluate the logistic regression objective function given the estimated parameters.

Note that if a point has 0 probability of being classified directly with the given parameters, then Evaluate() will return nan (this is kind of a corner case and should not happen for reasonable models).

The optimum (minimum) of this function is 0.0, and occurs when each point is classified correctly with very high probability.

Parameters
parametersVector of logistic regression parameters.

◆ Evaluate() [2/2]

template<typename MatType >
double mlpack::regression::LogisticRegressionFunction< MatType >::Evaluate ( const arma::mat &  parameters,
const size_t  begin,
const size_t  batchSize = 1 
) const

Evaluate the logistic regression log-likelihood function with the given parameters using the given batch size from the given point index.

Evaluate the logistic regression objective function given the estimated parameters for a given batch from a given point.

This is useful for optimizers such as SGD, which require a separable objective function. Note that if the points have 0 probability of being classified correctly with the given parameters, then Evaluate() will return nan (this is kind of a corner case and should not happen for reasonable models).

The optimum (minimum) of this function is 0.0, and occurs when the points are classified correctly with very high probability.

Parameters
parametersVector of logistic regression parameters.
beginIndex of the starting point to use for objective function evaluation.
batchSizeNumber of points to be passed at a time to use for objective function evaluation.

◆ Gradient() [1/2]

template<typename MatType >
void mlpack::regression::LogisticRegressionFunction< MatType >::Gradient ( const arma::mat &  parameters,
arma::mat &  gradient 
) const

Evaluate the gradient of the logistic regression log-likelihood function with the given parameters.

Evaluate the gradient of the logistic regression objective function.

Parameters
parametersVector of logistic regression parameters.
gradientVector to output gradient into.

◆ Gradient() [2/2]

template<typename MatType >
template<typename GradType >
void mlpack::regression::LogisticRegressionFunction< MatType >::Gradient ( const arma::mat &  parameters,
const size_t  begin,
GradType &  gradient,
const size_t  batchSize = 1 
) const

Evaluate the gradient of the logistic regression log-likelihood function with the given parameters, for the given batch size from a given point in the dataset.

Evaluate the gradient of the logistic regression objective function for a given batch size.

This is useful for optimizers such as SGD, which require a separable objective function.

Parameters
parametersVector of logistic regression parameters.
beginIndex of the starting point to use for objective function gradient evaluation.
gradientVector to output gradient into.
batchSizeNumber of points to be processed as a batch for objective function gradient evaluation.

◆ PartialGradient()

template<typename MatType >
void mlpack::regression::LogisticRegressionFunction< MatType >::PartialGradient ( const arma::mat &  parameters,
const size_t  j,
arma::sp_mat &  gradient 
) const

Evaluate the gradient of the logistic regression log-likelihood function with the given parameters, and with respect to only one feature in the dataset.

Evaluate the partial gradient of the logistic regression objective function with respect to the individual features in the parameter.

This is useful for optimizers such as SCD, which require partial gradients.

Parameters
parametersVector of logistic regression parameters.
jIndex of the feature with respect to which the gradient is to be computed.
gradientSparse matrix to output gradient into.

◆ Shuffle()

template<typename MatType >
void mlpack::regression::LogisticRegressionFunction< MatType >::Shuffle ( )

Shuffle the order of function visitation.

Shuffle the datapoints.

This may be called by the optimizer.


The documentation for this class was generated from the following files: