#include <simple_dqn.hpp>
|
|
| SimpleDQN () |
| | Default constructor.
|
| |
| | SimpleDQN (const int inputDim, const int h1, const int h2, const int outputDim, const bool isNoisy=false, InitType init=InitType(), OutputLayerType outputLayer=OutputLayerType()) |
| | Construct an instance of SimpleDQN class. More...
|
| |
| | SimpleDQN (NetworkType &network, const bool isNoisy=false) |
| | Construct an instance of SimpleDQN class from a pre-constructed network. More...
|
| |
| void | Predict (const arma::mat state, arma::mat &actionValue) |
| | Predict the responses to a given set of predictors. More...
|
| |
| void | Forward (const arma::mat state, arma::mat &target) |
| | Perform the forward pass of the states in real batch mode. More...
|
| |
|
void | ResetParameters () |
| | Resets the parameters of the network.
|
| |
|
void | ResetNoise () |
| | Resets noise of the network, if the network is of type noisy.
|
| |
|
const arma::mat & | Parameters () const |
| | Return the Parameters.
|
| |
|
arma::mat & | Parameters () |
| | Modify the Parameters.
|
| |
| void | Backward (const arma::mat state, arma::mat &target, arma::mat &gradient) |
| | Perform the backward pass of the state in real batch mode. More...
|
| |
template<typename OutputLayerType = MeanSquaredError<>, typename InitType = GaussianInitialization, typename NetworkType = FFN<OutputLayerType, InitType>>
class mlpack::rl::SimpleDQN< OutputLayerType, InitType, NetworkType >
- Template Parameters
-
| OutputLayerType | The output layer type of the network. |
| InitType | The initialization type used for the network. |
| NetworkType | The type of network used for simple dqn. |
◆ SimpleDQN() [1/2]
template<typename OutputLayerType = MeanSquaredError<>, typename InitType = GaussianInitialization, typename NetworkType = FFN<OutputLayerType, InitType>>
| mlpack::rl::SimpleDQN< OutputLayerType, InitType, NetworkType >::SimpleDQN |
( |
const int |
inputDim, |
|
|
const int |
h1, |
|
|
const int |
h2, |
|
|
const int |
outputDim, |
|
|
const bool |
isNoisy = false, |
|
|
InitType |
init = InitType(), |
|
|
OutputLayerType |
outputLayer = OutputLayerType() |
|
) |
| |
|
inline |
Construct an instance of SimpleDQN class.
- Parameters
-
| inputDim | Number of inputs. |
| h1 | Number of neurons in hiddenlayer-1. |
| h2 | Number of neurons in hiddenlayer-2. |
| outputDim | Number of neurons in output layer. |
| isNoisy | Specifies whether the network needs to be of type noisy. |
| init | Specifies the initialization rule for the network. |
| outputLayer | Specifies the output layer type for network. |
◆ SimpleDQN() [2/2]
template<typename OutputLayerType = MeanSquaredError<>, typename InitType = GaussianInitialization, typename NetworkType = FFN<OutputLayerType, InitType>>
Construct an instance of SimpleDQN class from a pre-constructed network.
- Parameters
-
| network | The network to be used by SimpleDQN class. |
| isNoisy | Specifies whether the network needs to be of type noisy. |
◆ Backward()
template<typename OutputLayerType = MeanSquaredError<>, typename InitType = GaussianInitialization, typename NetworkType = FFN<OutputLayerType, InitType>>
| void mlpack::rl::SimpleDQN< OutputLayerType, InitType, NetworkType >::Backward |
( |
const arma::mat |
state, |
|
|
arma::mat & |
target, |
|
|
arma::mat & |
gradient |
|
) |
| |
|
inline |
Perform the backward pass of the state in real batch mode.
- Parameters
-
| state | The input state. |
| target | The training target. |
| gradient | The gradient. |
◆ Forward()
template<typename OutputLayerType = MeanSquaredError<>, typename InitType = GaussianInitialization, typename NetworkType = FFN<OutputLayerType, InitType>>
| void mlpack::rl::SimpleDQN< OutputLayerType, InitType, NetworkType >::Forward |
( |
const arma::mat |
state, |
|
|
arma::mat & |
target |
|
) |
| |
|
inline |
Perform the forward pass of the states in real batch mode.
- Parameters
-
| state | The input state. |
| target | The predicted target. |
◆ Predict()
template<typename OutputLayerType = MeanSquaredError<>, typename InitType = GaussianInitialization, typename NetworkType = FFN<OutputLayerType, InitType>>
| void mlpack::rl::SimpleDQN< OutputLayerType, InitType, NetworkType >::Predict |
( |
const arma::mat |
state, |
|
|
arma::mat & |
actionValue |
|
) |
| |
|
inline |
Predict the responses to a given set of predictors.
The responses will reflect the output of the given output layer as returned by the output layer function.
If you want to pass in a parameter and discard the original parameter object, be sure to use std::move to avoid unnecessary copy.
- Parameters
-
| state | Input state. |
| actionValue | Matrix to put output action values of states input. |
The documentation for this class was generated from the following file: