mlpack
ffn.hpp
Go to the documentation of this file.
1 
13 #ifndef MLPACK_METHODS_ANN_FFN_HPP
14 #define MLPACK_METHODS_ANN_FFN_HPP
15 
16 #include <mlpack/prereqs.hpp>
17 
25 #include "visitor/copy_visitor.hpp"
26 #include "visitor/loss_visitor.hpp"
27 
29 
34 #include <ensmallen.hpp>
35 
36 namespace mlpack {
37 namespace ann {
38 
47 template<
48  typename OutputLayerType = NegativeLogLikelihood<>,
49  typename InitializationRuleType = RandomInitialization,
50  typename... CustomLayers
51 >
52 class FFN
53 {
54  public:
57 
71  FFN(OutputLayerType outputLayer = OutputLayerType(),
72  InitializationRuleType initializeRule = InitializationRuleType());
73 
75  FFN(const FFN&);
76 
78  FFN(FFN&&);
79 
82 
84  ~FFN();
85 
95  template<typename OptimizerType>
96  typename std::enable_if<
97  HasMaxIterations<OptimizerType, size_t&(OptimizerType::*)()>
98  ::value, void>::type
99  WarnMessageMaxIterations(OptimizerType& optimizer, size_t samples) const;
100 
109  template<typename OptimizerType>
110  typename std::enable_if<
111  !HasMaxIterations<OptimizerType, size_t&(OptimizerType::*)()>
112  ::value, void>::type
113  WarnMessageMaxIterations(OptimizerType& optimizer, size_t samples) const;
114 
135  template<typename OptimizerType, typename... CallbackTypes>
136  double Train(arma::mat predictors,
137  arma::mat responses,
138  OptimizerType& optimizer,
139  CallbackTypes&&... callbacks);
140 
161  template<typename OptimizerType = ens::RMSProp, typename... CallbackTypes>
162  double Train(arma::mat predictors,
163  arma::mat responses,
164  CallbackTypes&&... callbacks);
165 
177  void Predict(arma::mat predictors, arma::mat& results);
178 
186  template<typename PredictorsType, typename ResponsesType>
187  double Evaluate(const PredictorsType& predictors,
188  const ResponsesType& responses);
189 
196  double Evaluate(const arma::mat& parameters);
197 
211  double Evaluate(const arma::mat& parameters,
212  const size_t begin,
213  const size_t batchSize,
214  const bool deterministic);
215 
228  double Evaluate(const arma::mat& parameters,
229  const size_t begin,
230  const size_t batchSize);
231 
240  template<typename GradType>
241  double EvaluateWithGradient(const arma::mat& parameters, GradType& gradient);
242 
255  template<typename GradType>
256  double EvaluateWithGradient(const arma::mat& parameters,
257  const size_t begin,
258  GradType& gradient,
259  const size_t batchSize);
260 
273  void Gradient(const arma::mat& parameters,
274  const size_t begin,
275  arma::mat& gradient,
276  const size_t batchSize);
277 
282  void Shuffle();
283 
284  /*
285  * Add a new module to the model.
286  *
287  * @param args The layer parameter.
288  */
289  template <class LayerType, class... Args>
290  void Add(Args... args) { network.push_back(new LayerType(args...)); }
291 
292  /*
293  * Add a new module to the model.
294  *
295  * @param layer The Layer to be added to the model.
296  */
297  void Add(LayerTypes<CustomLayers...> layer) { network.push_back(layer); }
298 
300  const std::vector<LayerTypes<CustomLayers...> >& Model() const
301  {
302  return network;
303  }
307  std::vector<LayerTypes<CustomLayers...> >& Model() { return network; }
308 
310  size_t NumFunctions() const { return numFunctions; }
311 
313  const arma::mat& Parameters() const { return parameter; }
315  arma::mat& Parameters() { return parameter; }
316 
318  const arma::mat& Responses() const { return responses; }
320  arma::mat& Responses() { return responses; }
321 
323  const arma::mat& Predictors() const { return predictors; }
325  arma::mat& Predictors() { return predictors; }
326 
330  void ResetParameters();
331 
333  template<typename Archive>
334  void serialize(Archive& ar, const uint32_t /* version */);
335 
346  template<typename PredictorsType, typename ResponsesType>
347  void Forward(const PredictorsType& inputs, ResponsesType& results);
348 
360  template<typename PredictorsType, typename ResponsesType>
361  void Forward(const PredictorsType& inputs ,
362  ResponsesType& results,
363  const size_t begin,
364  const size_t end);
365 
378  template<typename PredictorsType,
379  typename TargetsType,
380  typename GradientsType>
381  double Backward(const PredictorsType& inputs,
382  const TargetsType& targets,
383  GradientsType& gradients);
384 
385  private:
386  // Helper functions.
393  template<typename InputType>
394  void Forward(const InputType& input);
395 
403  void ResetData(arma::mat predictors, arma::mat responses);
404 
409  void Backward();
410 
415  template<typename InputType>
416  void Gradient(const InputType& input);
417 
422  void ResetDeterministic();
423 
427  void ResetGradients(arma::mat& gradient);
428 
434  void Swap(FFN& network);
435 
437  OutputLayerType outputLayer;
438 
441  InitializationRuleType initializeRule;
442 
444  size_t width;
445 
447  size_t height;
448 
450  bool reset;
451 
453  std::vector<LayerTypes<CustomLayers...> > network;
454 
456  arma::mat predictors;
457 
459  arma::mat responses;
460 
462  arma::mat parameter;
463 
465  size_t numFunctions;
466 
468  arma::mat error;
469 
471  DeltaVisitor deltaVisitor;
472 
474  OutputParameterVisitor outputParameterVisitor;
475 
477  WeightSizeVisitor weightSizeVisitor;
478 
480  OutputWidthVisitor outputWidthVisitor;
481 
483  OutputHeightVisitor outputHeightVisitor;
484 
486  LossVisitor lossVisitor;
487 
489  ResetVisitor resetVisitor;
490 
492  DeleteVisitor deleteVisitor;
493 
495  bool deterministic;
496 
498  arma::mat delta;
499 
501  arma::mat inputParameter;
502 
504  arma::mat outputParameter;
505 
507  arma::mat gradient;
508 
510  CopyVisitor<CustomLayers...> copyVisitor;
511 
512  // The GAN class should have access to internal members.
513  template<
514  typename Model,
515  typename InitializerType,
516  typename NoiseType,
517  typename PolicyType
518  >
519  friend class GAN;
520 }; // class FFN
521 
522 } // namespace ann
523 } // namespace mlpack
524 
525 // Include implementation.
526 #include "ffn_impl.hpp"
527 
528 #endif
DeleteVisitor executes the destructor of the instantiated object.
Definition: delete_visitor.hpp:27
size_t NumFunctions() const
Return the number of separable functions (the number of predictor points).
Definition: ffn.hpp:310
OutputHeightVisitor exposes the OutputHeight() method of the given module.
Definition: output_height_visitor.hpp:27
Implementation of the Add module class.
Definition: add.hpp:34
const arma::mat & Parameters() const
Return the initial point for the optimization.
Definition: ffn.hpp:313
double EvaluateWithGradient(const arma::mat &parameters, GradType &gradient)
Evaluate the feedforward network with the given parameters.
Definition: ffn_impl.hpp:345
Linear algebra utility functions, generally performed on matrices or vectors.
Definition: cv.hpp:1
LossVisitor exposes the Loss() method of the given module.
Definition: loss_visitor.hpp:26
FFN & operator=(FFN)
Copy/move assignment operator.
Definition: ffn_impl.hpp:672
std::enable_if< HasMaxIterations< OptimizerType, size_t &(OptimizerType::*)()>::value, void >::type WarnMessageMaxIterations(OptimizerType &optimizer, size_t samples) const
Check if the optimizer has MaxIterations() parameter, if it does then check if it&#39;s value is less tha...
Definition: ffn_impl.hpp:77
This visitor is to support copy constructor for neural network module.
Definition: copy_visitor.hpp:26
The core includes that mlpack expects; standard C++ includes and Armadillo.
FFN(OutputLayerType outputLayer=OutputLayerType(), InitializationRuleType initializeRule=InitializationRuleType())
Create the FFN object.
Definition: ffn_impl.hpp:34
WeightSizeVisitor returns the number of weights of the given module.
Definition: weight_size_visitor.hpp:27
void ResetParameters()
Reset the module infomration (weights/parameters).
Definition: ffn_impl.hpp:424
double Backward(const PredictorsType &inputs, const TargetsType &targets, GradientsType &gradients)
Perform the backward pass of the data in real batch mode.
Definition: ffn_impl.hpp:200
const arma::mat & Responses() const
Get the matrix of responses to the input data points.
Definition: ffn.hpp:318
ResetVisitor executes the Reset() function.
Definition: reset_visitor.hpp:26
OutputParameterVisitor exposes the output parameter of the given module.
Definition: output_parameter_visitor.hpp:27
void serialize(Archive &ar, const uint32_t)
Serialize the model.
Definition: ffn_impl.hpp:557
~FFN()
Destructor to release allocated memory.
Definition: ffn_impl.hpp:49
arma::mat & Predictors()
Modify the matrix of data points (predictors).
Definition: ffn.hpp:325
arma::mat & Parameters()
Modify the initial point for the optimization.
Definition: ffn.hpp:315
arma::mat & Responses()
Modify the matrix of responses to the input data points.
Definition: ffn.hpp:320
void Forward(const PredictorsType &inputs, ResponsesType &results)
Perform the forward pass of the data in real batch mode.
Definition: ffn_impl.hpp:163
void Shuffle()
Shuffle the order of function visitation.
Definition: ffn_impl.hpp:416
DeltaVisitor exposes the delta parameter of the given module.
Definition: delta_visitor.hpp:27
The implementation of the standard GAN module.
Definition: gan.hpp:63
void Gradient(const arma::mat &parameters, const size_t begin, arma::mat &gradient, const size_t batchSize)
Evaluate the gradient of the feedforward network with the given parameters, and with respect to only ...
Definition: ffn_impl.hpp:405
Implementation of a standard feed forward network.
Definition: ffn.hpp:52
std::vector< LayerTypes< CustomLayers... > > & Model()
Modify the network model.
Definition: ffn.hpp:307
OutputWidthVisitor exposes the OutputWidth() method of the given module.
Definition: output_width_visitor.hpp:27
const arma::mat & Predictors() const
Get the matrix of data points (predictors).
Definition: ffn.hpp:323
void Predict(arma::mat predictors, arma::mat &results)
Predict the responses to a given set of predictors.
Definition: ffn_impl.hpp:227
double Train(arma::mat predictors, arma::mat responses, OptimizerType &optimizer, CallbackTypes &&... callbacks)
Train the feedforward network on the given input data using the given optimizer.
Definition: ffn_impl.hpp:108
const std::vector< LayerTypes< CustomLayers... > > & Model() const
Get the network model.
Definition: ffn.hpp:300
double Evaluate(const PredictorsType &predictors, const ResponsesType &responses)
Evaluate the feedforward network with the given predictors and responses.
Definition: ffn_impl.hpp:263