Implementation of the Add module class.
More...
#include <add.hpp>
|
| | Add (const size_t outSize=0) |
| | Create the Add object using the specified number of output units. More...
|
| |
| template<typename eT > |
| void | Forward (const arma::Mat< eT > &input, arma::Mat< eT > &output) |
| | Ordinary feed forward pass of a neural network, evaluating the function f(x) by propagating the activity forward through f. More...
|
| |
| template<typename eT > |
| void | Backward (const arma::Mat< eT > &, const arma::Mat< eT > &gy, arma::Mat< eT > &g) |
| | Ordinary feed backward pass of a neural network, calculating the function f(x) by propagating x backwards trough f. More...
|
| |
| template<typename eT > |
| void | Gradient (const arma::Mat< eT > &, const arma::Mat< eT > &error, arma::Mat< eT > &gradient) |
| | Calculate the gradient using the output delta and the input activation. More...
|
| |
|
OutputDataType const & | Parameters () const |
| | Get the parameters.
|
| |
|
OutputDataType & | Parameters () |
| | Modify the parameters.
|
| |
|
OutputDataType const & | OutputParameter () const |
| | Get the output parameter.
|
| |
|
OutputDataType & | OutputParameter () |
| | Modify the output parameter.
|
| |
|
OutputDataType const & | Delta () const |
| | Get the delta.
|
| |
|
OutputDataType & | Delta () |
| | Modify the delta.
|
| |
|
OutputDataType const & | Gradient () const |
| | Get the gradient.
|
| |
|
OutputDataType & | Gradient () |
| | Modify the gradient.
|
| |
|
size_t | OutputSize () const |
| | Get the output size.
|
| |
|
size_t | WeightSize () const |
| | Get the size of weights.
|
| |
|
template<typename Archive > |
| void | serialize (Archive &ar, const uint32_t) |
| | Serialize the layer.
|
| |
template<typename InputDataType = arma::mat, typename OutputDataType = arma::mat>
class mlpack::ann::Add< InputDataType, OutputDataType >
Implementation of the Add module class.
The Add module applies a bias term to the incoming data.
- Template Parameters
-
| InputDataType | Type of the input data (arma::colvec, arma::mat, arma::sp_mat or arma::cube). |
| OutputDataType | Type of the output data (arma::colvec, arma::mat, arma::sp_mat or arma::cube). |
◆ Add()
template<typename InputDataType , typename OutputDataType >
Create the Add object using the specified number of output units.
- Parameters
-
| outSize | The number of output units. |
◆ Backward()
template<typename InputDataType , typename OutputDataType >
template<typename eT >
| void mlpack::ann::Add< InputDataType, OutputDataType >::Backward |
( |
const arma::Mat< eT > & |
, |
|
|
const arma::Mat< eT > & |
gy, |
|
|
arma::Mat< eT > & |
g |
|
) |
| |
Ordinary feed backward pass of a neural network, calculating the function f(x) by propagating x backwards trough f.
Using the results from the feed forward pass.
- Parameters
-
| * | (input) The propagated input activation. |
| gy | The backpropagated error. |
| g | The calculated gradient. |
◆ Forward()
template<typename InputDataType , typename OutputDataType >
template<typename eT >
| void mlpack::ann::Add< InputDataType, OutputDataType >::Forward |
( |
const arma::Mat< eT > & |
input, |
|
|
arma::Mat< eT > & |
output |
|
) |
| |
Ordinary feed forward pass of a neural network, evaluating the function f(x) by propagating the activity forward through f.
- Parameters
-
| input | Input data used for evaluating the specified function. |
| output | Resulting output activation. |
◆ Gradient()
template<typename InputDataType , typename OutputDataType >
template<typename eT >
| void mlpack::ann::Add< InputDataType, OutputDataType >::Gradient |
( |
const arma::Mat< eT > & |
, |
|
|
const arma::Mat< eT > & |
error, |
|
|
arma::Mat< eT > & |
gradient |
|
) |
| |
Calculate the gradient using the output delta and the input activation.
- Parameters
-
| * | (input) The propagated input. |
| error | The calculated error. |
| gradient | The calculated gradient. |
The documentation for this class was generated from the following files: