mlpack
Public Member Functions | List of all members
mlpack::ann::Add< InputDataType, OutputDataType > Class Template Reference

Implementation of the Add module class. More...

#include <add.hpp>

Public Member Functions

 Add (const size_t outSize=0)
 Create the Add object using the specified number of output units. More...
 
template<typename eT >
void Forward (const arma::Mat< eT > &input, arma::Mat< eT > &output)
 Ordinary feed forward pass of a neural network, evaluating the function f(x) by propagating the activity forward through f. More...
 
template<typename eT >
void Backward (const arma::Mat< eT > &, const arma::Mat< eT > &gy, arma::Mat< eT > &g)
 Ordinary feed backward pass of a neural network, calculating the function f(x) by propagating x backwards trough f. More...
 
template<typename eT >
void Gradient (const arma::Mat< eT > &, const arma::Mat< eT > &error, arma::Mat< eT > &gradient)
 Calculate the gradient using the output delta and the input activation. More...
 
OutputDataType const & Parameters () const
 Get the parameters.
 
OutputDataType & Parameters ()
 Modify the parameters.
 
OutputDataType const & OutputParameter () const
 Get the output parameter.
 
OutputDataType & OutputParameter ()
 Modify the output parameter.
 
OutputDataType const & Delta () const
 Get the delta.
 
OutputDataType & Delta ()
 Modify the delta.
 
OutputDataType const & Gradient () const
 Get the gradient.
 
OutputDataType & Gradient ()
 Modify the gradient.
 
size_t OutputSize () const
 Get the output size.
 
size_t WeightSize () const
 Get the size of weights.
 
template<typename Archive >
void serialize (Archive &ar, const uint32_t)
 Serialize the layer.
 

Detailed Description

template<typename InputDataType = arma::mat, typename OutputDataType = arma::mat>
class mlpack::ann::Add< InputDataType, OutputDataType >

Implementation of the Add module class.

The Add module applies a bias term to the incoming data.

Template Parameters
InputDataTypeType of the input data (arma::colvec, arma::mat, arma::sp_mat or arma::cube).
OutputDataTypeType of the output data (arma::colvec, arma::mat, arma::sp_mat or arma::cube).

Constructor & Destructor Documentation

◆ Add()

template<typename InputDataType , typename OutputDataType >
mlpack::ann::Add< InputDataType, OutputDataType >::Add ( const size_t  outSize = 0)

Create the Add object using the specified number of output units.

Parameters
outSizeThe number of output units.

Member Function Documentation

◆ Backward()

template<typename InputDataType , typename OutputDataType >
template<typename eT >
void mlpack::ann::Add< InputDataType, OutputDataType >::Backward ( const arma::Mat< eT > &  ,
const arma::Mat< eT > &  gy,
arma::Mat< eT > &  g 
)

Ordinary feed backward pass of a neural network, calculating the function f(x) by propagating x backwards trough f.

Using the results from the feed forward pass.

Parameters
*(input) The propagated input activation.
gyThe backpropagated error.
gThe calculated gradient.

◆ Forward()

template<typename InputDataType , typename OutputDataType >
template<typename eT >
void mlpack::ann::Add< InputDataType, OutputDataType >::Forward ( const arma::Mat< eT > &  input,
arma::Mat< eT > &  output 
)

Ordinary feed forward pass of a neural network, evaluating the function f(x) by propagating the activity forward through f.

Parameters
inputInput data used for evaluating the specified function.
outputResulting output activation.

◆ Gradient()

template<typename InputDataType , typename OutputDataType >
template<typename eT >
void mlpack::ann::Add< InputDataType, OutputDataType >::Gradient ( const arma::Mat< eT > &  ,
const arma::Mat< eT > &  error,
arma::Mat< eT > &  gradient 
)

Calculate the gradient using the output delta and the input activation.

Parameters
*(input) The propagated input.
errorThe calculated error.
gradientThe calculated gradient.

The documentation for this class was generated from the following files: