mlpack
Classes | Macros | Functions
decision_tree_test.cpp File Reference
#include <mlpack/core.hpp>
#include <mlpack/core/util/mlpack_main.hpp>
#include <mlpack/methods/decision_tree/decision_tree_main.cpp>
#include "test_helper.hpp"
#include "../test_catch_tools.hpp"
#include "../catch.hpp"
Include dependency graph for decision_tree_test.cpp:

Classes

struct  DecisionTreeTestFixture
 

Macros

#define BINDING_TYPE   BINDING_TYPE_TEST
 

Functions

void ResetDTSettings ()
 
 TEST_CASE_METHOD (DecisionTreeTestFixture, "DecisionTreeOutputDimensionTest", "[DecisionTreeMainTest][BindingTests]")
 Check that number of output points and number of input points are equal.
 
 TEST_CASE_METHOD (DecisionTreeTestFixture, "DecisionTreeCategoricalOutputDimensionTest", "[DecisionTreeMainTest][BindingTests]")
 Check that number of output points and number of input points are equal for categorical dataset.
 
 TEST_CASE_METHOD (DecisionTreeTestFixture, "DecisionTreeMinimumLeafSizeTest", "[DecisionTreeMainTest][BindingTests]")
 Make sure minimum leaf size is always a non-negative number.
 
 TEST_CASE_METHOD (DecisionTreeTestFixture, "DecisionTreeNonNegativeMaximumDepthTest", "[DecisionTreeMainTest][BindingTests]")
 Make sure maximum depth is always a non-negative number.
 
 TEST_CASE_METHOD (DecisionTreeTestFixture, "DecisionMinimumGainSplitTest", "[DecisionTreeMainTest][BindingTests]")
 Make sure minimum gain split is always a fraction in range [0,1].
 
 TEST_CASE_METHOD (DecisionTreeTestFixture, "DecisionRegularisationTest", "[DecisionTreeMainTest][BindingTests]")
 Make sure minimum gain split produces regularised tree.
 
 TEST_CASE_METHOD (DecisionTreeTestFixture, "DecisionModelReuseTest", "[DecisionTreeMainTest][BindingTests]")
 Ensure that saved model can be used again.
 
 TEST_CASE_METHOD (DecisionTreeTestFixture, "DecisionTreeTrainingVerTest", "[DecisionTreeMainTest][BindingTests]")
 Make sure only one of training data or pre-trained model is passed.
 
 TEST_CASE_METHOD (DecisionTreeTestFixture, "DecisionModelCategoricalReuseTest", "[DecisionTreeMainTest][BindingTests]")
 Ensure that saved model trained on categorical dataset can be used again.
 
 TEST_CASE_METHOD (DecisionTreeTestFixture, "DecisionTreeMaximumDepthTest", "[DecisionTreeMainTest][BindingTests]")
 Check that different maximum depths give different results.
 

Detailed Description

Author
Manish Kumar

Test mlpackMain() of decision_tree_main.cpp.

mlpack is free software; you may redistribute it and/or modify it under the terms of the 3-clause BSD license. You should have received a copy of the 3-clause BSD license along with mlpack. If not, see http://www.opensource.org/licenses/BSD-3-Clause for more information.