math-php
Public Member Functions | Public Attributes | Protected Attributes | List of all members
MathPHP\Probability\Distribution\Continuous\Cauchy Class Reference

Cauchy distribution https://en.wikipedia.org/wiki/Cauchy_distribution. More...

Inheritance diagram for MathPHP\Probability\Distribution\Continuous\Cauchy:
Inheritance graph
[legend]
Collaboration diagram for MathPHP\Probability\Distribution\Continuous\Cauchy:
Collaboration graph
[legend]

Public Member Functions

 __construct (float $x₀, float $γ)
 Constructor. More...
 
 pdf (float $x)
 Probability density function. More...
 
 cdf (float $x)
 Cumulative distribution function Calculate the cumulative value value up to a point, left tail. More...
 
 inverse (float $p)
 Inverse CDF (Quantile function) More...
 
 mean ()
 Mean of the distribution (undefined) More...
 
 median ()
 Median of the distribution. More...
 
 mode ()
 Mode of the distribution. More...
 
 variance ()
 Variance of the distribution (undefined) More...
 
- Public Member Functions inherited from MathPHP\Probability\Distribution\Continuous\Continuous
 inverse (float $target)
 The Inverse CDF of the distribution. More...
 
 between (float $x₁, float $x₂)
 CDF between - probability of being between two points, x₁ and x₂ The area under a continuous distribution, that lies between two specified points. More...
 
 outside (float $x₁, float $x₂)
 CDF outside - Probability of being below x₁ and above x₂. More...
 
 above (float $x)
 CDF above - Probability of being above x to ∞ Area under a continuous distribution, that lies above a specified point. More...
 
 rand ()
 Produce a random number with a particular distribution. More...
 
- Public Member Functions inherited from MathPHP\Probability\Distribution\Distribution
 __construct (... $params)
 Constructor. More...
 

Public Attributes

const PARAMETER_LIMITS
 
const SUPPORT_LIMITS
 
- Public Attributes inherited from MathPHP\Probability\Distribution\Continuous\Continuous
const GUESS_THRESHOLD = 10
 
const GUESS_ALLOWANCE = 8
 

Protected Attributes

 $x₀
 
 
 

Detailed Description

Cauchy distribution https://en.wikipedia.org/wiki/Cauchy_distribution.

Constructor & Destructor Documentation

◆ __construct()

MathPHP\Probability\Distribution\Continuous\Cauchy::__construct ( float  $x₀,
float   
)

Constructor.

Parameters
float$x₀location parameter
floatscale parameter γ > 0

Member Function Documentation

◆ cdf()

MathPHP\Probability\Distribution\Continuous\Cauchy::cdf ( float  $x)

Cumulative distribution function Calculate the cumulative value value up to a point, left tail.

Parameters
float$x
Returns
float

Implements MathPHP\Probability\Distribution\Continuous\ContinuousDistribution.

◆ inverse()

MathPHP\Probability\Distribution\Continuous\Cauchy::inverse ( float  $p)

Inverse CDF (Quantile function)

Q(p;x₀,γ) = x₀ + γ tan[π(p - ½)]

Parameters
float$p
Returns
float

◆ mean()

MathPHP\Probability\Distribution\Continuous\Cauchy::mean ( )

Mean of the distribution (undefined)

μ is undefined

Returns
float

Implements MathPHP\Probability\Distribution\Continuous\ContinuousDistribution.

◆ median()

MathPHP\Probability\Distribution\Continuous\Cauchy::median ( )

Median of the distribution.

Returns
float x₀

◆ mode()

MathPHP\Probability\Distribution\Continuous\Cauchy::mode ( )

Mode of the distribution.

Returns
float x₀

◆ pdf()

MathPHP\Probability\Distribution\Continuous\Cauchy::pdf ( float  $x)

Probability density function.

1

┌ / x - x₀ \ ² ┐ πγ | 1 + | ------—| | └ \ γ / ┘

Parameters
float$x
Returns
float

Implements MathPHP\Probability\Distribution\Continuous\ContinuousDistribution.

◆ variance()

MathPHP\Probability\Distribution\Continuous\Cauchy::variance ( )

Variance of the distribution (undefined)

Returns
float

Member Data Documentation

◆ PARAMETER_LIMITS

const MathPHP\Probability\Distribution\Continuous\Cauchy::PARAMETER_LIMITS
Initial value:
= [
'x₀' => '(-∞,∞)'

◆ SUPPORT_LIMITS

const MathPHP\Probability\Distribution\Continuous\Cauchy::SUPPORT_LIMITS
Initial value:
= [
'x' => '(-∞,∞)'

The documentation for this class was generated from the following file: