compbio
BDCSVD.h
1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // We used the "A Divide-And-Conquer Algorithm for the Bidiagonal SVD"
5 // research report written by Ming Gu and Stanley C.Eisenstat
6 // The code variable names correspond to the names they used in their
7 // report
8 //
9 // Copyright (C) 2013 Gauthier Brun <brun.gauthier@gmail.com>
10 // Copyright (C) 2013 Nicolas Carre <nicolas.carre@ensimag.fr>
11 // Copyright (C) 2013 Jean Ceccato <jean.ceccato@ensimag.fr>
12 // Copyright (C) 2013 Pierre Zoppitelli <pierre.zoppitelli@ensimag.fr>
13 // Copyright (C) 2013 Jitse Niesen <jitse@maths.leeds.ac.uk>
14 // Copyright (C) 2014-2016 Gael Guennebaud <gael.guennebaud@inria.fr>
15 //
16 // Source Code Form is subject to the terms of the Mozilla
17 // Public License v. 2.0. If a copy of the MPL was not distributed
18 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
19 
20 #ifndef EIGEN_BDCSVD_H
21 #define EIGEN_BDCSVD_H
22 // #define EIGEN_BDCSVD_DEBUG_VERBOSE
23 // #define EIGEN_BDCSVD_SANITY_CHECKS
24 
25 namespace Eigen {
26 
27 #ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
28 IOFormat bdcsvdfmt(8, 0, ", ", "\n", " [", "]");
29 #endif
30 
31 template<typename _MatrixType> class BDCSVD;
32 
33 namespace internal {
34 
35 template<typename _MatrixType>
36 struct traits<BDCSVD<_MatrixType> >
37 {
38  typedef _MatrixType MatrixType;
39 };
40 
41 } // end namespace internal
42 
43 
66 template<typename _MatrixType>
67 class BDCSVD : public SVDBase<BDCSVD<_MatrixType> >
68 {
69  typedef SVDBase<BDCSVD> Base;
70 
71 public:
72  using Base::rows;
73  using Base::cols;
74  using Base::computeU;
75  using Base::computeV;
76 
77  typedef _MatrixType MatrixType;
78  typedef typename MatrixType::Scalar Scalar;
79  typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar;
80  enum {
81  RowsAtCompileTime = MatrixType::RowsAtCompileTime,
82  ColsAtCompileTime = MatrixType::ColsAtCompileTime,
83  DiagSizeAtCompileTime = EIGEN_SIZE_MIN_PREFER_DYNAMIC(RowsAtCompileTime, ColsAtCompileTime),
84  MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
85  MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime,
86  MaxDiagSizeAtCompileTime = EIGEN_SIZE_MIN_PREFER_FIXED(MaxRowsAtCompileTime, MaxColsAtCompileTime),
87  MatrixOptions = MatrixType::Options
88  };
89 
90  typedef typename Base::MatrixUType MatrixUType;
91  typedef typename Base::MatrixVType MatrixVType;
92  typedef typename Base::SingularValuesType SingularValuesType;
93 
97  typedef Array<RealScalar, Dynamic, 1> ArrayXr;
98  typedef Array<Index,1,Dynamic> ArrayXi;
99  typedef Ref<ArrayXr> ArrayRef;
100  typedef Ref<ArrayXi> IndicesRef;
101 
107  BDCSVD() : m_algoswap(16), m_numIters(0)
108  {}
109 
110 
117  BDCSVD(Index rows, Index cols, unsigned int computationOptions = 0)
118  : m_algoswap(16), m_numIters(0)
119  {
120  allocate(rows, cols, computationOptions);
121  }
122 
133  BDCSVD(const MatrixType& matrix, unsigned int computationOptions = 0)
134  : m_algoswap(16), m_numIters(0)
135  {
136  compute(matrix, computationOptions);
137  }
138 
139  ~BDCSVD()
140  {
141  }
142 
153  BDCSVD& compute(const MatrixType& matrix, unsigned int computationOptions);
154 
161  BDCSVD& compute(const MatrixType& matrix)
162  {
163  return compute(matrix, this->m_computationOptions);
164  }
165 
166  void setSwitchSize(int s)
167  {
168  eigen_assert(s>3 && "BDCSVD the size of the algo switch has to be greater than 3");
169  m_algoswap = s;
170  }
171 
172 private:
173  void allocate(Index rows, Index cols, unsigned int computationOptions);
174  void divide(Index firstCol, Index lastCol, Index firstRowW, Index firstColW, Index shift);
175  void computeSVDofM(Index firstCol, Index n, MatrixXr& U, VectorType& singVals, MatrixXr& V);
176  void computeSingVals(const ArrayRef& col0, const ArrayRef& diag, const IndicesRef& perm, VectorType& singVals, ArrayRef shifts, ArrayRef mus);
177  void perturbCol0(const ArrayRef& col0, const ArrayRef& diag, const IndicesRef& perm, const VectorType& singVals, const ArrayRef& shifts, const ArrayRef& mus, ArrayRef zhat);
178  void computeSingVecs(const ArrayRef& zhat, const ArrayRef& diag, const IndicesRef& perm, const VectorType& singVals, const ArrayRef& shifts, const ArrayRef& mus, MatrixXr& U, MatrixXr& V);
179  void deflation43(Index firstCol, Index shift, Index i, Index size);
180  void deflation44(Index firstColu , Index firstColm, Index firstRowW, Index firstColW, Index i, Index j, Index size);
181  void deflation(Index firstCol, Index lastCol, Index k, Index firstRowW, Index firstColW, Index shift);
182  template<typename HouseholderU, typename HouseholderV, typename NaiveU, typename NaiveV>
183  void copyUV(const HouseholderU &householderU, const HouseholderV &householderV, const NaiveU &naiveU, const NaiveV &naivev);
184  void structured_update(Block<MatrixXr,Dynamic,Dynamic> A, const MatrixXr &B, Index n1);
185  static RealScalar secularEq(RealScalar x, const ArrayRef& col0, const ArrayRef& diag, const IndicesRef &perm, const ArrayRef& diagShifted, RealScalar shift);
186 
187 protected:
188  MatrixXr m_naiveU, m_naiveV;
189  MatrixXr m_computed;
190  Index m_nRec;
191  ArrayXr m_workspace;
192  ArrayXi m_workspaceI;
193  int m_algoswap;
194  bool m_isTranspose, m_compU, m_compV;
195 
196  using Base::m_singularValues;
197  using Base::m_diagSize;
198  using Base::m_computeFullU;
199  using Base::m_computeFullV;
200  using Base::m_computeThinU;
201  using Base::m_computeThinV;
202  using Base::m_matrixU;
203  using Base::m_matrixV;
204  using Base::m_isInitialized;
205  using Base::m_nonzeroSingularValues;
206 
207 public:
208  int m_numIters;
209 }; //end class BDCSVD
210 
211 
212 // Method to allocate and initialize matrix and attributes
213 template<typename MatrixType>
214 void BDCSVD<MatrixType>::allocate(Index rows, Index cols, unsigned int computationOptions)
215 {
216  m_isTranspose = (cols > rows);
217 
218  if (Base::allocate(rows, cols, computationOptions))
219  return;
220 
221  m_computed = MatrixXr::Zero(m_diagSize + 1, m_diagSize );
222  m_compU = computeV();
223  m_compV = computeU();
224  if (m_isTranspose)
225  std::swap(m_compU, m_compV);
226 
227  if (m_compU) m_naiveU = MatrixXr::Zero(m_diagSize + 1, m_diagSize + 1 );
228  else m_naiveU = MatrixXr::Zero(2, m_diagSize + 1 );
229 
230  if (m_compV) m_naiveV = MatrixXr::Zero(m_diagSize, m_diagSize);
231 
232  m_workspace.resize((m_diagSize+1)*(m_diagSize+1)*3);
233  m_workspaceI.resize(3*m_diagSize);
234 }// end allocate
235 
236 template<typename MatrixType>
237 BDCSVD<MatrixType>& BDCSVD<MatrixType>::compute(const MatrixType& matrix, unsigned int computationOptions)
238 {
239 #ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
240  std::cout << "\n\n\n======================================================================================================================\n\n\n";
241 #endif
242  allocate(matrix.rows(), matrix.cols(), computationOptions);
243  using std::abs;
244 
245  const RealScalar considerZero = (std::numeric_limits<RealScalar>::min)();
246 
247  //**** step -1 - If the problem is too small, directly falls back to JacobiSVD and return
248  if(matrix.cols() < m_algoswap)
249  {
250  // FIXME this line involves temporaries
251  JacobiSVD<MatrixType> jsvd(matrix,computationOptions);
252  if(computeU()) m_matrixU = jsvd.matrixU();
253  if(computeV()) m_matrixV = jsvd.matrixV();
254  m_singularValues = jsvd.singularValues();
255  m_nonzeroSingularValues = jsvd.nonzeroSingularValues();
256  m_isInitialized = true;
257  return *this;
258  }
259 
260  //**** step 0 - Copy the input matrix and apply scaling to reduce over/under-flows
261  RealScalar scale = matrix.cwiseAbs().maxCoeff();
262  if(scale==RealScalar(0)) scale = RealScalar(1);
263  MatrixX copy;
264  if (m_isTranspose) copy = matrix.adjoint()/scale;
265  else copy = matrix/scale;
266 
267  //**** step 1 - Bidiagonalization
268  // FIXME this line involves temporaries
270 
271  //**** step 2 - Divide & Conquer
272  m_naiveU.setZero();
273  m_naiveV.setZero();
274  // FIXME this line involves a temporary matrix
275  m_computed.topRows(m_diagSize) = bid.bidiagonal().toDenseMatrix().transpose();
276  m_computed.template bottomRows<1>().setZero();
277  divide(0, m_diagSize - 1, 0, 0, 0);
278 
279  //**** step 3 - Copy singular values and vectors
280  for (int i=0; i<m_diagSize; i++)
281  {
282  RealScalar a = abs(m_computed.coeff(i, i));
283  m_singularValues.coeffRef(i) = a * scale;
284  if (a<considerZero)
285  {
286  m_nonzeroSingularValues = i;
287  m_singularValues.tail(m_diagSize - i - 1).setZero();
288  break;
289  }
290  else if (i == m_diagSize - 1)
291  {
292  m_nonzeroSingularValues = i + 1;
293  break;
294  }
295  }
296 
297 #ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
298 // std::cout << "m_naiveU\n" << m_naiveU << "\n\n";
299 // std::cout << "m_naiveV\n" << m_naiveV << "\n\n";
300 #endif
301  if(m_isTranspose) copyUV(bid.householderV(), bid.householderU(), m_naiveV, m_naiveU);
302  else copyUV(bid.householderU(), bid.householderV(), m_naiveU, m_naiveV);
303 
304  m_isInitialized = true;
305  return *this;
306 }// end compute
307 
308 
309 template<typename MatrixType>
310 template<typename HouseholderU, typename HouseholderV, typename NaiveU, typename NaiveV>
311 void BDCSVD<MatrixType>::copyUV(const HouseholderU &householderU, const HouseholderV &householderV, const NaiveU &naiveU, const NaiveV &naiveV)
312 {
313  // Note exchange of U and V: m_matrixU is set from m_naiveV and vice versa
314  if (computeU())
315  {
316  Index Ucols = m_computeThinU ? m_diagSize : householderU.cols();
317  m_matrixU = MatrixX::Identity(householderU.cols(), Ucols);
318  m_matrixU.topLeftCorner(m_diagSize, m_diagSize) = naiveV.template cast<Scalar>().topLeftCorner(m_diagSize, m_diagSize);
319  householderU.applyThisOnTheLeft(m_matrixU); // FIXME this line involves a temporary buffer
320  }
321  if (computeV())
322  {
323  Index Vcols = m_computeThinV ? m_diagSize : householderV.cols();
324  m_matrixV = MatrixX::Identity(householderV.cols(), Vcols);
325  m_matrixV.topLeftCorner(m_diagSize, m_diagSize) = naiveU.template cast<Scalar>().topLeftCorner(m_diagSize, m_diagSize);
326  householderV.applyThisOnTheLeft(m_matrixV); // FIXME this line involves a temporary buffer
327  }
328 }
329 
338 template<typename MatrixType>
340 {
341  Index n = A.rows();
342  if(n>100)
343  {
344  // If the matrices are large enough, let's exploit the sparse structure of A by
345  // splitting it in half (wrt n1), and packing the non-zero columns.
346  Index n2 = n - n1;
347  Map<MatrixXr> A1(m_workspace.data() , n1, n);
348  Map<MatrixXr> A2(m_workspace.data()+ n1*n, n2, n);
349  Map<MatrixXr> B1(m_workspace.data()+ n*n, n, n);
350  Map<MatrixXr> B2(m_workspace.data()+2*n*n, n, n);
351  Index k1=0, k2=0;
352  for(Index j=0; j<n; ++j)
353  {
354  if( (A.col(j).head(n1).array()!=0).any() )
355  {
356  A1.col(k1) = A.col(j).head(n1);
357  B1.row(k1) = B.row(j);
358  ++k1;
359  }
360  if( (A.col(j).tail(n2).array()!=0).any() )
361  {
362  A2.col(k2) = A.col(j).tail(n2);
363  B2.row(k2) = B.row(j);
364  ++k2;
365  }
366  }
367 
368  A.topRows(n1).noalias() = A1.leftCols(k1) * B1.topRows(k1);
369  A.bottomRows(n2).noalias() = A2.leftCols(k2) * B2.topRows(k2);
370  }
371  else
372  {
373  Map<MatrixXr,Aligned> tmp(m_workspace.data(),n,n);
374  tmp.noalias() = A*B;
375  A = tmp;
376  }
377 }
378 
379 // The divide algorithm is done "in place", we are always working on subsets of the same matrix. The divide methods takes as argument the
380 // place of the submatrix we are currently working on.
381 
382 //@param firstCol : The Index of the first column of the submatrix of m_computed and for m_naiveU;
383 //@param lastCol : The Index of the last column of the submatrix of m_computed and for m_naiveU;
384 // lastCol + 1 - firstCol is the size of the submatrix.
385 //@param firstRowW : The Index of the first row of the matrix W that we are to change. (see the reference paper section 1 for more information on W)
386 //@param firstRowW : Same as firstRowW with the column.
387 //@param shift : Each time one takes the left submatrix, one must add 1 to the shift. Why? Because! We actually want the last column of the U submatrix
388 // to become the first column (*coeff) and to shift all the other columns to the right. There are more details on the reference paper.
389 template<typename MatrixType>
390 void BDCSVD<MatrixType>::divide (Index firstCol, Index lastCol, Index firstRowW, Index firstColW, Index shift)
391 {
392  // requires rows = cols + 1;
393  using std::pow;
394  using std::sqrt;
395  using std::abs;
396  const Index n = lastCol - firstCol + 1;
397  const Index k = n/2;
398  const RealScalar considerZero = (std::numeric_limits<RealScalar>::min)();
399  RealScalar alphaK;
400  RealScalar betaK;
401  RealScalar r0;
402  RealScalar lambda, phi, c0, s0;
403  VectorType l, f;
404  // We use the other algorithm which is more efficient for small
405  // matrices.
406  if (n < m_algoswap)
407  {
408  // FIXME this line involves temporaries
409  JacobiSVD<MatrixXr> b(m_computed.block(firstCol, firstCol, n + 1, n), ComputeFullU | (m_compV ? ComputeFullV : 0));
410  if (m_compU)
411  m_naiveU.block(firstCol, firstCol, n + 1, n + 1).real() = b.matrixU();
412  else
413  {
414  m_naiveU.row(0).segment(firstCol, n + 1).real() = b.matrixU().row(0);
415  m_naiveU.row(1).segment(firstCol, n + 1).real() = b.matrixU().row(n);
416  }
417  if (m_compV) m_naiveV.block(firstRowW, firstColW, n, n).real() = b.matrixV();
418  m_computed.block(firstCol + shift, firstCol + shift, n + 1, n).setZero();
419  m_computed.diagonal().segment(firstCol + shift, n) = b.singularValues().head(n);
420  return;
421  }
422  // We use the divide and conquer algorithm
423  alphaK = m_computed(firstCol + k, firstCol + k);
424  betaK = m_computed(firstCol + k + 1, firstCol + k);
425  // The divide must be done in that order in order to have good results. Divide change the data inside the submatrices
426  // and the divide of the right submatrice reads one column of the left submatrice. That's why we need to treat the
427  // right submatrix before the left one.
428  divide(k + 1 + firstCol, lastCol, k + 1 + firstRowW, k + 1 + firstColW, shift);
429  divide(firstCol, k - 1 + firstCol, firstRowW, firstColW + 1, shift + 1);
430 
431  if (m_compU)
432  {
433  lambda = m_naiveU(firstCol + k, firstCol + k);
434  phi = m_naiveU(firstCol + k + 1, lastCol + 1);
435  }
436  else
437  {
438  lambda = m_naiveU(1, firstCol + k);
439  phi = m_naiveU(0, lastCol + 1);
440  }
441  r0 = sqrt((abs(alphaK * lambda) * abs(alphaK * lambda)) + abs(betaK * phi) * abs(betaK * phi));
442  if (m_compU)
443  {
444  l = m_naiveU.row(firstCol + k).segment(firstCol, k);
445  f = m_naiveU.row(firstCol + k + 1).segment(firstCol + k + 1, n - k - 1);
446  }
447  else
448  {
449  l = m_naiveU.row(1).segment(firstCol, k);
450  f = m_naiveU.row(0).segment(firstCol + k + 1, n - k - 1);
451  }
452  if (m_compV) m_naiveV(firstRowW+k, firstColW) = 1;
453  if (r0<considerZero)
454  {
455  c0 = 1;
456  s0 = 0;
457  }
458  else
459  {
460  c0 = alphaK * lambda / r0;
461  s0 = betaK * phi / r0;
462  }
463 
464 #ifdef EIGEN_BDCSVD_SANITY_CHECKS
465  assert(m_naiveU.allFinite());
466  assert(m_naiveV.allFinite());
467  assert(m_computed.allFinite());
468 #endif
469 
470  if (m_compU)
471  {
472  MatrixXr q1 (m_naiveU.col(firstCol + k).segment(firstCol, k + 1));
473  // we shiftW Q1 to the right
474  for (Index i = firstCol + k - 1; i >= firstCol; i--)
475  m_naiveU.col(i + 1).segment(firstCol, k + 1) = m_naiveU.col(i).segment(firstCol, k + 1);
476  // we shift q1 at the left with a factor c0
477  m_naiveU.col(firstCol).segment( firstCol, k + 1) = (q1 * c0);
478  // last column = q1 * - s0
479  m_naiveU.col(lastCol + 1).segment(firstCol, k + 1) = (q1 * ( - s0));
480  // first column = q2 * s0
481  m_naiveU.col(firstCol).segment(firstCol + k + 1, n - k) = m_naiveU.col(lastCol + 1).segment(firstCol + k + 1, n - k) * s0;
482  // q2 *= c0
483  m_naiveU.col(lastCol + 1).segment(firstCol + k + 1, n - k) *= c0;
484  }
485  else
486  {
487  RealScalar q1 = m_naiveU(0, firstCol + k);
488  // we shift Q1 to the right
489  for (Index i = firstCol + k - 1; i >= firstCol; i--)
490  m_naiveU(0, i + 1) = m_naiveU(0, i);
491  // we shift q1 at the left with a factor c0
492  m_naiveU(0, firstCol) = (q1 * c0);
493  // last column = q1 * - s0
494  m_naiveU(0, lastCol + 1) = (q1 * ( - s0));
495  // first column = q2 * s0
496  m_naiveU(1, firstCol) = m_naiveU(1, lastCol + 1) *s0;
497  // q2 *= c0
498  m_naiveU(1, lastCol + 1) *= c0;
499  m_naiveU.row(1).segment(firstCol + 1, k).setZero();
500  m_naiveU.row(0).segment(firstCol + k + 1, n - k - 1).setZero();
501  }
502 
503 #ifdef EIGEN_BDCSVD_SANITY_CHECKS
504  assert(m_naiveU.allFinite());
505  assert(m_naiveV.allFinite());
506  assert(m_computed.allFinite());
507 #endif
508 
509  m_computed(firstCol + shift, firstCol + shift) = r0;
510  m_computed.col(firstCol + shift).segment(firstCol + shift + 1, k) = alphaK * l.transpose().real();
511  m_computed.col(firstCol + shift).segment(firstCol + shift + k + 1, n - k - 1) = betaK * f.transpose().real();
512 
513 #ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
514  ArrayXr tmp1 = (m_computed.block(firstCol+shift, firstCol+shift, n, n)).jacobiSvd().singularValues();
515 #endif
516  // Second part: try to deflate singular values in combined matrix
517  deflation(firstCol, lastCol, k, firstRowW, firstColW, shift);
518 #ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
519  ArrayXr tmp2 = (m_computed.block(firstCol+shift, firstCol+shift, n, n)).jacobiSvd().singularValues();
520  std::cout << "\n\nj1 = " << tmp1.transpose().format(bdcsvdfmt) << "\n";
521  std::cout << "j2 = " << tmp2.transpose().format(bdcsvdfmt) << "\n\n";
522  std::cout << "err: " << ((tmp1-tmp2).abs()>1e-12*tmp2.abs()).transpose() << "\n";
523  static int count = 0;
524  std::cout << "# " << ++count << "\n\n";
525  assert((tmp1-tmp2).matrix().norm() < 1e-14*tmp2.matrix().norm());
526 // assert(count<681);
527 // assert(((tmp1-tmp2).abs()<1e-13*tmp2.abs()).all());
528 #endif
529 
530  // Third part: compute SVD of combined matrix
531  MatrixXr UofSVD, VofSVD;
532  VectorType singVals;
533  computeSVDofM(firstCol + shift, n, UofSVD, singVals, VofSVD);
534 
535 #ifdef EIGEN_BDCSVD_SANITY_CHECKS
536  assert(UofSVD.allFinite());
537  assert(VofSVD.allFinite());
538 #endif
539 
540  if (m_compU)
541  structured_update(m_naiveU.block(firstCol, firstCol, n + 1, n + 1), UofSVD, (n+2)/2);
542  else
543  {
544  Map<Matrix<RealScalar,2,Dynamic>,Aligned> tmp(m_workspace.data(),2,n+1);
545  tmp.noalias() = m_naiveU.middleCols(firstCol, n+1) * UofSVD;
546  m_naiveU.middleCols(firstCol, n + 1) = tmp;
547  }
548 
549  if (m_compV) structured_update(m_naiveV.block(firstRowW, firstColW, n, n), VofSVD, (n+1)/2);
550 
551 #ifdef EIGEN_BDCSVD_SANITY_CHECKS
552  assert(m_naiveU.allFinite());
553  assert(m_naiveV.allFinite());
554  assert(m_computed.allFinite());
555 #endif
556 
557  m_computed.block(firstCol + shift, firstCol + shift, n, n).setZero();
558  m_computed.block(firstCol + shift, firstCol + shift, n, n).diagonal() = singVals;
559 }// end divide
560 
561 // Compute SVD of m_computed.block(firstCol, firstCol, n + 1, n); this block only has non-zeros in
562 // the first column and on the diagonal and has undergone deflation, so diagonal is in increasing
563 // order except for possibly the (0,0) entry. The computed SVD is stored U, singVals and V, except
564 // that if m_compV is false, then V is not computed. Singular values are sorted in decreasing order.
565 //
566 // TODO Opportunities for optimization: better root finding algo, better stopping criterion, better
567 // handling of round-off errors, be consistent in ordering
568 // For instance, to solve the secular equation using FMM, see http://www.stat.uchicago.edu/~lekheng/courses/302/classics/greengard-rokhlin.pdf
569 template <typename MatrixType>
570 void BDCSVD<MatrixType>::computeSVDofM(Index firstCol, Index n, MatrixXr& U, VectorType& singVals, MatrixXr& V)
571 {
572  const RealScalar considerZero = (std::numeric_limits<RealScalar>::min)();
573  using std::abs;
574  ArrayRef col0 = m_computed.col(firstCol).segment(firstCol, n);
575  m_workspace.head(n) = m_computed.block(firstCol, firstCol, n, n).diagonal();
576  ArrayRef diag = m_workspace.head(n);
577  diag(0) = 0;
578 
579  // Allocate space for singular values and vectors
580  singVals.resize(n);
581  U.resize(n+1, n+1);
582  if (m_compV) V.resize(n, n);
583 
584 #ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
585  if (col0.hasNaN() || diag.hasNaN())
586  std::cout << "\n\nHAS NAN\n\n";
587 #endif
588 
589  // Many singular values might have been deflated, the zero ones have been moved to the end,
590  // but others are interleaved and we must ignore them at this stage.
591  // To this end, let's compute a permutation skipping them:
592  Index actual_n = n;
593  while(actual_n>1 && diag(actual_n-1)==0) --actual_n;
594  Index m = 0; // size of the deflated problem
595  for(Index k=0;k<actual_n;++k)
596  if(abs(col0(k))>considerZero)
597  m_workspaceI(m++) = k;
598  Map<ArrayXi> perm(m_workspaceI.data(),m);
599 
600  Map<ArrayXr> shifts(m_workspace.data()+1*n, n);
601  Map<ArrayXr> mus(m_workspace.data()+2*n, n);
602  Map<ArrayXr> zhat(m_workspace.data()+3*n, n);
603 
604 #ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
605  std::cout << "computeSVDofM using:\n";
606  std::cout << " z: " << col0.transpose() << "\n";
607  std::cout << " d: " << diag.transpose() << "\n";
608 #endif
609 
610  // Compute singVals, shifts, and mus
611  computeSingVals(col0, diag, perm, singVals, shifts, mus);
612 
613 #ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
614  std::cout << " j: " << (m_computed.block(firstCol, firstCol, n, n)).jacobiSvd().singularValues().transpose().reverse() << "\n\n";
615  std::cout << " sing-val: " << singVals.transpose() << "\n";
616  std::cout << " mu: " << mus.transpose() << "\n";
617  std::cout << " shift: " << shifts.transpose() << "\n";
618 
619  {
620  Index actual_n = n;
621  while(actual_n>1 && abs(col0(actual_n-1))<considerZero) --actual_n;
622  std::cout << "\n\n mus: " << mus.head(actual_n).transpose() << "\n\n";
623  std::cout << " check1 (expect0) : " << ((singVals.array()-(shifts+mus)) / singVals.array()).head(actual_n).transpose() << "\n\n";
624  std::cout << " check2 (>0) : " << ((singVals.array()-diag) / singVals.array()).head(actual_n).transpose() << "\n\n";
625  std::cout << " check3 (>0) : " << ((diag.segment(1,actual_n-1)-singVals.head(actual_n-1).array()) / singVals.head(actual_n-1).array()).transpose() << "\n\n\n";
626  std::cout << " check4 (>0) : " << ((singVals.segment(1,actual_n-1)-singVals.head(actual_n-1))).transpose() << "\n\n\n";
627  }
628 #endif
629 
630 #ifdef EIGEN_BDCSVD_SANITY_CHECKS
631  assert(singVals.allFinite());
632  assert(mus.allFinite());
633  assert(shifts.allFinite());
634 #endif
635 
636  // Compute zhat
637  perturbCol0(col0, diag, perm, singVals, shifts, mus, zhat);
638 #ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
639  std::cout << " zhat: " << zhat.transpose() << "\n";
640 #endif
641 
642 #ifdef EIGEN_BDCSVD_SANITY_CHECKS
643  assert(zhat.allFinite());
644 #endif
645 
646  computeSingVecs(zhat, diag, perm, singVals, shifts, mus, U, V);
647 
648 #ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
649  std::cout << "U^T U: " << (U.transpose() * U - MatrixXr(MatrixXr::Identity(U.cols(),U.cols()))).norm() << "\n";
650  std::cout << "V^T V: " << (V.transpose() * V - MatrixXr(MatrixXr::Identity(V.cols(),V.cols()))).norm() << "\n";
651 #endif
652 
653 #ifdef EIGEN_BDCSVD_SANITY_CHECKS
654  assert(U.allFinite());
655  assert(V.allFinite());
656  assert((U.transpose() * U - MatrixXr(MatrixXr::Identity(U.cols(),U.cols()))).norm() < 1e-14 * n);
657  assert((V.transpose() * V - MatrixXr(MatrixXr::Identity(V.cols(),V.cols()))).norm() < 1e-14 * n);
658  assert(m_naiveU.allFinite());
659  assert(m_naiveV.allFinite());
660  assert(m_computed.allFinite());
661 #endif
662 
663  // Because of deflation, the singular values might not be completely sorted.
664  // Fortunately, reordering them is a O(n) problem
665  for(Index i=0; i<actual_n-1; ++i)
666  {
667  if(singVals(i)>singVals(i+1))
668  {
669  using std::swap;
670  swap(singVals(i),singVals(i+1));
671  U.col(i).swap(U.col(i+1));
672  if(m_compV) V.col(i).swap(V.col(i+1));
673  }
674  }
675 
676  // Reverse order so that singular values in increased order
677  // Because of deflation, the zeros singular-values are already at the end
678  singVals.head(actual_n).reverseInPlace();
679  U.leftCols(actual_n).rowwise().reverseInPlace();
680  if (m_compV) V.leftCols(actual_n).rowwise().reverseInPlace();
681 
682 #ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
683  JacobiSVD<MatrixXr> jsvd(m_computed.block(firstCol, firstCol, n, n) );
684  std::cout << " * j: " << jsvd.singularValues().transpose() << "\n\n";
685  std::cout << " * sing-val: " << singVals.transpose() << "\n";
686 // std::cout << " * err: " << ((jsvd.singularValues()-singVals)>1e-13*singVals.norm()).transpose() << "\n";
687 #endif
688 }
689 
690 template <typename MatrixType>
691 typename BDCSVD<MatrixType>::RealScalar BDCSVD<MatrixType>::secularEq(RealScalar mu, const ArrayRef& col0, const ArrayRef& diag, const IndicesRef &perm, const ArrayRef& diagShifted, RealScalar shift)
692 {
693  Index m = perm.size();
694  RealScalar res = 1;
695  for(Index i=0; i<m; ++i)
696  {
697  Index j = perm(i);
698  res += numext::abs2(col0(j)) / ((diagShifted(j) - mu) * (diag(j) + shift + mu));
699  }
700  return res;
701 
702 }
703 
704 template <typename MatrixType>
705 void BDCSVD<MatrixType>::computeSingVals(const ArrayRef& col0, const ArrayRef& diag, const IndicesRef &perm,
706  VectorType& singVals, ArrayRef shifts, ArrayRef mus)
707 {
708  using std::abs;
709  using std::swap;
710 
711  Index n = col0.size();
712  Index actual_n = n;
713  while(actual_n>1 && col0(actual_n-1)==0) --actual_n;
714 
715  for (Index k = 0; k < n; ++k)
716  {
717  if (col0(k) == 0 || actual_n==1)
718  {
719  // if col0(k) == 0, then entry is deflated, so singular value is on diagonal
720  // if actual_n==1, then the deflated problem is already diagonalized
721  singVals(k) = k==0 ? col0(0) : diag(k);
722  mus(k) = 0;
723  shifts(k) = k==0 ? col0(0) : diag(k);
724  continue;
725  }
726 
727  // otherwise, use secular equation to find singular value
728  RealScalar left = diag(k);
729  RealScalar right; // was: = (k != actual_n-1) ? diag(k+1) : (diag(actual_n-1) + col0.matrix().norm());
730  if(k==actual_n-1)
731  right = (diag(actual_n-1) + col0.matrix().norm());
732  else
733  {
734  // Skip deflated singular values
735  Index l = k+1;
736  while(col0(l)==0) { ++l; eigen_internal_assert(l<actual_n); }
737  right = diag(l);
738  }
739 
740  // first decide whether it's closer to the left end or the right end
741  RealScalar mid = left + (right-left) / 2;
742  RealScalar fMid = secularEq(mid, col0, diag, perm, diag, 0);
743 #ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
744  std::cout << right-left << "\n";
745  std::cout << "fMid = " << fMid << " " << secularEq(mid-left, col0, diag, perm, diag-left, left) << " " << secularEq(mid-right, col0, diag, perm, diag-right, right) << "\n";
746  std::cout << " = " << secularEq(0.1*(left+right), col0, diag, perm, diag, 0)
747  << " " << secularEq(0.2*(left+right), col0, diag, perm, diag, 0)
748  << " " << secularEq(0.3*(left+right), col0, diag, perm, diag, 0)
749  << " " << secularEq(0.4*(left+right), col0, diag, perm, diag, 0)
750  << " " << secularEq(0.49*(left+right), col0, diag, perm, diag, 0)
751  << " " << secularEq(0.5*(left+right), col0, diag, perm, diag, 0)
752  << " " << secularEq(0.51*(left+right), col0, diag, perm, diag, 0)
753  << " " << secularEq(0.6*(left+right), col0, diag, perm, diag, 0)
754  << " " << secularEq(0.7*(left+right), col0, diag, perm, diag, 0)
755  << " " << secularEq(0.8*(left+right), col0, diag, perm, diag, 0)
756  << " " << secularEq(0.9*(left+right), col0, diag, perm, diag, 0) << "\n";
757 #endif
758  RealScalar shift = (k == actual_n-1 || fMid > 0) ? left : right;
759 
760  // measure everything relative to shift
761  Map<ArrayXr> diagShifted(m_workspace.data()+4*n, n);
762  diagShifted = diag - shift;
763 
764  // initial guess
765  RealScalar muPrev, muCur;
766  if (shift == left)
767  {
768  muPrev = (right - left) * RealScalar(0.1);
769  if (k == actual_n-1) muCur = right - left;
770  else muCur = (right - left) * RealScalar(0.5);
771  }
772  else
773  {
774  muPrev = -(right - left) * RealScalar(0.1);
775  muCur = -(right - left) * RealScalar(0.5);
776  }
777 
778  RealScalar fPrev = secularEq(muPrev, col0, diag, perm, diagShifted, shift);
779  RealScalar fCur = secularEq(muCur, col0, diag, perm, diagShifted, shift);
780  if (abs(fPrev) < abs(fCur))
781  {
782  swap(fPrev, fCur);
783  swap(muPrev, muCur);
784  }
785 
786  // rational interpolation: fit a function of the form a / mu + b through the two previous
787  // iterates and use its zero to compute the next iterate
788  bool useBisection = fPrev*fCur>0;
789  while (fCur!=0 && abs(muCur - muPrev) > 8 * NumTraits<RealScalar>::epsilon() * numext::maxi<RealScalar>(abs(muCur), abs(muPrev)) && abs(fCur - fPrev)>NumTraits<RealScalar>::epsilon() && !useBisection)
790  {
791  ++m_numIters;
792 
793  // Find a and b such that the function f(mu) = a / mu + b matches the current and previous samples.
794  RealScalar a = (fCur - fPrev) / (1/muCur - 1/muPrev);
795  RealScalar b = fCur - a / muCur;
796  // And find mu such that f(mu)==0:
797  RealScalar muZero = -a/b;
798  RealScalar fZero = secularEq(muZero, col0, diag, perm, diagShifted, shift);
799 
800  muPrev = muCur;
801  fPrev = fCur;
802  muCur = muZero;
803  fCur = fZero;
804 
805 
806  if (shift == left && (muCur < 0 || muCur > right - left)) useBisection = true;
807  if (shift == right && (muCur < -(right - left) || muCur > 0)) useBisection = true;
808  if (abs(fCur)>abs(fPrev)) useBisection = true;
809  }
810 
811  // fall back on bisection method if rational interpolation did not work
812  if (useBisection)
813  {
814 #ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
815  std::cout << "useBisection for k = " << k << ", actual_n = " << actual_n << "\n";
816 #endif
817  RealScalar leftShifted, rightShifted;
818  if (shift == left)
819  {
820  leftShifted = (std::numeric_limits<RealScalar>::min)();
821  // I don't understand why the case k==0 would be special there:
822  // if (k == 0) rightShifted = right - left; else
823  rightShifted = (k==actual_n-1) ? right : ((right - left) * RealScalar(0.6)); // theoretically we can take 0.5, but let's be safe
824  }
825  else
826  {
827  leftShifted = -(right - left) * RealScalar(0.6);
828  rightShifted = -(std::numeric_limits<RealScalar>::min)();
829  }
830 
831  RealScalar fLeft = secularEq(leftShifted, col0, diag, perm, diagShifted, shift);
832 
833 #if defined EIGEN_INTERNAL_DEBUGGING || defined EIGEN_BDCSVD_DEBUG_VERBOSE
834  RealScalar fRight = secularEq(rightShifted, col0, diag, perm, diagShifted, shift);
835 #endif
836 
837 #ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
838  if(!(fLeft * fRight<0))
839  {
840  std::cout << "fLeft: " << leftShifted << " - " << diagShifted.head(10).transpose() << "\n ; " << bool(left==shift) << " " << (left-shift) << "\n";
841  std::cout << k << " : " << fLeft << " * " << fRight << " == " << fLeft * fRight << " ; " << left << " - " << right << " -> " << leftShifted << " " << rightShifted << " shift=" << shift << "\n";
842  }
843 #endif
844  eigen_internal_assert(fLeft * fRight < 0);
845 
846  while (rightShifted - leftShifted > 2 * NumTraits<RealScalar>::epsilon() * numext::maxi<RealScalar>(abs(leftShifted), abs(rightShifted)))
847  {
848  RealScalar midShifted = (leftShifted + rightShifted) / 2;
849  fMid = secularEq(midShifted, col0, diag, perm, diagShifted, shift);
850  if (fLeft * fMid < 0)
851  {
852  rightShifted = midShifted;
853  }
854  else
855  {
856  leftShifted = midShifted;
857  fLeft = fMid;
858  }
859  }
860 
861  muCur = (leftShifted + rightShifted) / 2;
862  }
863 
864  singVals[k] = shift + muCur;
865  shifts[k] = shift;
866  mus[k] = muCur;
867 
868  // perturb singular value slightly if it equals diagonal entry to avoid division by zero later
869  // (deflation is supposed to avoid this from happening)
870  // - this does no seem to be necessary anymore -
871 // if (singVals[k] == left) singVals[k] *= 1 + NumTraits<RealScalar>::epsilon();
872 // if (singVals[k] == right) singVals[k] *= 1 - NumTraits<RealScalar>::epsilon();
873  }
874 }
875 
876 
877 // zhat is perturbation of col0 for which singular vectors can be computed stably (see Section 3.1)
878 template <typename MatrixType>
880  (const ArrayRef& col0, const ArrayRef& diag, const IndicesRef &perm, const VectorType& singVals,
881  const ArrayRef& shifts, const ArrayRef& mus, ArrayRef zhat)
882 {
883  using std::sqrt;
884  Index n = col0.size();
885  Index m = perm.size();
886  if(m==0)
887  {
888  zhat.setZero();
889  return;
890  }
891  Index last = perm(m-1);
892  // The offset permits to skip deflated entries while computing zhat
893  for (Index k = 0; k < n; ++k)
894  {
895  if (col0(k) == 0) // deflated
896  zhat(k) = 0;
897  else
898  {
899  // see equation (3.6)
900  RealScalar dk = diag(k);
901  RealScalar prod = (singVals(last) + dk) * (mus(last) + (shifts(last) - dk));
902 
903  for(Index l = 0; l<m; ++l)
904  {
905  Index i = perm(l);
906  if(i!=k)
907  {
908  Index j = i<k ? i : perm(l-1);
909  prod *= ((singVals(j)+dk) / ((diag(i)+dk))) * ((mus(j)+(shifts(j)-dk)) / ((diag(i)-dk)));
910 #ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
911  if(i!=k && std::abs(((singVals(j)+dk)*(mus(j)+(shifts(j)-dk)))/((diag(i)+dk)*(diag(i)-dk)) - 1) > 0.9 )
912  std::cout << " " << ((singVals(j)+dk)*(mus(j)+(shifts(j)-dk)))/((diag(i)+dk)*(diag(i)-dk)) << " == (" << (singVals(j)+dk) << " * " << (mus(j)+(shifts(j)-dk))
913  << ") / (" << (diag(i)+dk) << " * " << (diag(i)-dk) << ")\n";
914 #endif
915  }
916  }
917 #ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
918  std::cout << "zhat(" << k << ") = sqrt( " << prod << ") ; " << (singVals(last) + dk) << " * " << mus(last) + shifts(last) << " - " << dk << "\n";
919 #endif
920  RealScalar tmp = sqrt(prod);
921  zhat(k) = col0(k) > 0 ? tmp : -tmp;
922  }
923  }
924 }
925 
926 // compute singular vectors
927 template <typename MatrixType>
929  (const ArrayRef& zhat, const ArrayRef& diag, const IndicesRef &perm, const VectorType& singVals,
930  const ArrayRef& shifts, const ArrayRef& mus, MatrixXr& U, MatrixXr& V)
931 {
932  Index n = zhat.size();
933  Index m = perm.size();
934 
935  for (Index k = 0; k < n; ++k)
936  {
937  if (zhat(k) == 0)
938  {
939  U.col(k) = VectorType::Unit(n+1, k);
940  if (m_compV) V.col(k) = VectorType::Unit(n, k);
941  }
942  else
943  {
944  U.col(k).setZero();
945  for(Index l=0;l<m;++l)
946  {
947  Index i = perm(l);
948  U(i,k) = zhat(i)/(((diag(i) - shifts(k)) - mus(k)) )/( (diag(i) + singVals[k]));
949  }
950  U(n,k) = 0;
951  U.col(k).normalize();
952 
953  if (m_compV)
954  {
955  V.col(k).setZero();
956  for(Index l=1;l<m;++l)
957  {
958  Index i = perm(l);
959  V(i,k) = diag(i) * zhat(i) / (((diag(i) - shifts(k)) - mus(k)) )/( (diag(i) + singVals[k]));
960  }
961  V(0,k) = -1;
962  V.col(k).normalize();
963  }
964  }
965  }
966  U.col(n) = VectorType::Unit(n+1, n);
967 }
968 
969 
970 // page 12_13
971 // i >= 1, di almost null and zi non null.
972 // We use a rotation to zero out zi applied to the left of M
973 template <typename MatrixType>
974 void BDCSVD<MatrixType>::deflation43(Index firstCol, Index shift, Index i, Index size)
975 {
976  using std::abs;
977  using std::sqrt;
978  using std::pow;
979  Index start = firstCol + shift;
980  RealScalar c = m_computed(start, start);
981  RealScalar s = m_computed(start+i, start);
982  RealScalar r = sqrt(numext::abs2(c) + numext::abs2(s));
983  if (r == 0)
984  {
985  m_computed(start+i, start+i) = 0;
986  return;
987  }
988  m_computed(start,start) = r;
989  m_computed(start+i, start) = 0;
990  m_computed(start+i, start+i) = 0;
991 
992  JacobiRotation<RealScalar> J(c/r,-s/r);
993  if (m_compU) m_naiveU.middleRows(firstCol, size+1).applyOnTheRight(firstCol, firstCol+i, J);
994  else m_naiveU.applyOnTheRight(firstCol, firstCol+i, J);
995 }// end deflation 43
996 
997 
998 // page 13
999 // i,j >= 1, i!=j and |di - dj| < epsilon * norm2(M)
1000 // We apply two rotations to have zj = 0;
1001 // TODO deflation44 is still broken and not properly tested
1002 template <typename MatrixType>
1003 void BDCSVD<MatrixType>::deflation44(Index firstColu , Index firstColm, Index firstRowW, Index firstColW, Index i, Index j, Index size)
1004 {
1005  using std::abs;
1006  using std::sqrt;
1007  using std::conj;
1008  using std::pow;
1009  RealScalar c = m_computed(firstColm+i, firstColm);
1010  RealScalar s = m_computed(firstColm+j, firstColm);
1011  RealScalar r = sqrt(numext::abs2(c) + numext::abs2(s));
1012 #ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
1013  std::cout << "deflation 4.4: " << i << "," << j << " -> " << c << " " << s << " " << r << " ; "
1014  << m_computed(firstColm + i-1, firstColm) << " "
1015  << m_computed(firstColm + i, firstColm) << " "
1016  << m_computed(firstColm + i+1, firstColm) << " "
1017  << m_computed(firstColm + i+2, firstColm) << "\n";
1018  std::cout << m_computed(firstColm + i-1, firstColm + i-1) << " "
1019  << m_computed(firstColm + i, firstColm+i) << " "
1020  << m_computed(firstColm + i+1, firstColm+i+1) << " "
1021  << m_computed(firstColm + i+2, firstColm+i+2) << "\n";
1022 #endif
1023  if (r==0)
1024  {
1025  m_computed(firstColm + i, firstColm + i) = m_computed(firstColm + j, firstColm + j);
1026  return;
1027  }
1028  c/=r;
1029  s/=r;
1030  m_computed(firstColm + i, firstColm) = r;
1031  m_computed(firstColm + j, firstColm + j) = m_computed(firstColm + i, firstColm + i);
1032  m_computed(firstColm + j, firstColm) = 0;
1033 
1035  if (m_compU) m_naiveU.middleRows(firstColu, size+1).applyOnTheRight(firstColu + i, firstColu + j, J);
1036  else m_naiveU.applyOnTheRight(firstColu+i, firstColu+j, J);
1037  if (m_compV) m_naiveV.middleRows(firstRowW, size).applyOnTheRight(firstColW + i, firstColW + j, J);
1038 }// end deflation 44
1039 
1040 
1041 // acts on block from (firstCol+shift, firstCol+shift) to (lastCol+shift, lastCol+shift) [inclusive]
1042 template <typename MatrixType>
1043 void BDCSVD<MatrixType>::deflation(Index firstCol, Index lastCol, Index k, Index firstRowW, Index firstColW, Index shift)
1044 {
1045  using std::sqrt;
1046  using std::abs;
1047  const Index length = lastCol + 1 - firstCol;
1048 
1049  Block<MatrixXr,Dynamic,1> col0(m_computed, firstCol+shift, firstCol+shift, length, 1);
1050  Diagonal<MatrixXr> fulldiag(m_computed);
1051  VectorBlock<Diagonal<MatrixXr>,Dynamic> diag(fulldiag, firstCol+shift, length);
1052 
1053  const RealScalar considerZero = (std::numeric_limits<RealScalar>::min)();
1054  RealScalar maxDiag = diag.tail((std::max)(Index(1),length-1)).cwiseAbs().maxCoeff();
1055  RealScalar epsilon_strict = numext::maxi<RealScalar>(considerZero,NumTraits<RealScalar>::epsilon() * maxDiag);
1056  RealScalar epsilon_coarse = 8 * NumTraits<RealScalar>::epsilon() * numext::maxi<RealScalar>(col0.cwiseAbs().maxCoeff(), maxDiag);
1057 
1058 #ifdef EIGEN_BDCSVD_SANITY_CHECKS
1059  assert(m_naiveU.allFinite());
1060  assert(m_naiveV.allFinite());
1061  assert(m_computed.allFinite());
1062 #endif
1063 
1064 #ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
1065  std::cout << "\ndeflate:" << diag.head(k+1).transpose() << " | " << diag.segment(k+1,length-k-1).transpose() << "\n";
1066 #endif
1067 
1068  //condition 4.1
1069  if (diag(0) < epsilon_coarse)
1070  {
1071 #ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
1072  std::cout << "deflation 4.1, because " << diag(0) << " < " << epsilon_coarse << "\n";
1073 #endif
1074  diag(0) = epsilon_coarse;
1075  }
1076 
1077  //condition 4.2
1078  for (Index i=1;i<length;++i)
1079  if (abs(col0(i)) < epsilon_strict)
1080  {
1081 #ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
1082  std::cout << "deflation 4.2, set z(" << i << ") to zero because " << abs(col0(i)) << " < " << epsilon_strict << " (diag(" << i << ")=" << diag(i) << ")\n";
1083 #endif
1084  col0(i) = 0;
1085  }
1086 
1087  //condition 4.3
1088  for (Index i=1;i<length; i++)
1089  if (diag(i) < epsilon_coarse)
1090  {
1091 #ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
1092  std::cout << "deflation 4.3, cancel z(" << i << ")=" << col0(i) << " because diag(" << i << ")=" << diag(i) << " < " << epsilon_coarse << "\n";
1093 #endif
1094  deflation43(firstCol, shift, i, length);
1095  }
1096 
1097 #ifdef EIGEN_BDCSVD_SANITY_CHECKS
1098  assert(m_naiveU.allFinite());
1099  assert(m_naiveV.allFinite());
1100  assert(m_computed.allFinite());
1101 #endif
1102 #ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
1103  std::cout << "to be sorted: " << diag.transpose() << "\n\n";
1104 #endif
1105  {
1106  // Check for total deflation
1107  // If we have a total deflation, then we have to consider col0(0)==diag(0) as a singular value during sorting
1108  bool total_deflation = (col0.tail(length-1).array()<considerZero).all();
1109 
1110  // Sort the diagonal entries, since diag(1:k-1) and diag(k:length) are already sorted, let's do a sorted merge.
1111  // First, compute the respective permutation.
1112  Index *permutation = m_workspaceI.data();
1113  {
1114  permutation[0] = 0;
1115  Index p = 1;
1116 
1117  // Move deflated diagonal entries at the end.
1118  for(Index i=1; i<length; ++i)
1119  if(abs(diag(i))<considerZero)
1120  permutation[p++] = i;
1121 
1122  Index i=1, j=k+1;
1123  for( ; p < length; ++p)
1124  {
1125  if (i > k) permutation[p] = j++;
1126  else if (j >= length) permutation[p] = i++;
1127  else if (diag(i) < diag(j)) permutation[p] = j++;
1128  else permutation[p] = i++;
1129  }
1130  }
1131 
1132  // If we have a total deflation, then we have to insert diag(0) at the right place
1133  if(total_deflation)
1134  {
1135  for(Index i=1; i<length; ++i)
1136  {
1137  Index pi = permutation[i];
1138  if(abs(diag(pi))<considerZero || diag(0)<diag(pi))
1139  permutation[i-1] = permutation[i];
1140  else
1141  {
1142  permutation[i-1] = 0;
1143  break;
1144  }
1145  }
1146  }
1147 
1148  // Current index of each col, and current column of each index
1149  Index *realInd = m_workspaceI.data()+length;
1150  Index *realCol = m_workspaceI.data()+2*length;
1151 
1152  for(int pos = 0; pos< length; pos++)
1153  {
1154  realCol[pos] = pos;
1155  realInd[pos] = pos;
1156  }
1157 
1158  for(Index i = total_deflation?0:1; i < length; i++)
1159  {
1160  const Index pi = permutation[length - (total_deflation ? i+1 : i)];
1161  const Index J = realCol[pi];
1162 
1163  using std::swap;
1164  // swap diagonal and first column entries:
1165  swap(diag(i), diag(J));
1166  if(i!=0 && J!=0) swap(col0(i), col0(J));
1167 
1168  // change columns
1169  if (m_compU) m_naiveU.col(firstCol+i).segment(firstCol, length + 1).swap(m_naiveU.col(firstCol+J).segment(firstCol, length + 1));
1170  else m_naiveU.col(firstCol+i).segment(0, 2) .swap(m_naiveU.col(firstCol+J).segment(0, 2));
1171  if (m_compV) m_naiveV.col(firstColW + i).segment(firstRowW, length).swap(m_naiveV.col(firstColW + J).segment(firstRowW, length));
1172 
1173  //update real pos
1174  const Index realI = realInd[i];
1175  realCol[realI] = J;
1176  realCol[pi] = i;
1177  realInd[J] = realI;
1178  realInd[i] = pi;
1179  }
1180  }
1181 #ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
1182  std::cout << "sorted: " << diag.transpose().format(bdcsvdfmt) << "\n";
1183  std::cout << " : " << col0.transpose() << "\n\n";
1184 #endif
1185 
1186  //condition 4.4
1187  {
1188  Index i = length-1;
1189  while(i>0 && (abs(diag(i))<considerZero || abs(col0(i))<considerZero)) --i;
1190  for(; i>1;--i)
1191  if( (diag(i) - diag(i-1)) < NumTraits<RealScalar>::epsilon()*maxDiag )
1192  {
1193 #ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
1194  std::cout << "deflation 4.4 with i = " << i << " because " << (diag(i) - diag(i-1)) << " < " << NumTraits<RealScalar>::epsilon()*diag(i) << "\n";
1195 #endif
1196  eigen_internal_assert(abs(diag(i) - diag(i-1))<epsilon_coarse && " diagonal entries are not properly sorted");
1197  deflation44(firstCol, firstCol + shift, firstRowW, firstColW, i-1, i, length);
1198  }
1199  }
1200 
1201 #ifdef EIGEN_BDCSVD_SANITY_CHECKS
1202  for(Index j=2;j<length;++j)
1203  assert(diag(j-1)<=diag(j) || abs(diag(j))<considerZero);
1204 #endif
1205 
1206 #ifdef EIGEN_BDCSVD_SANITY_CHECKS
1207  assert(m_naiveU.allFinite());
1208  assert(m_naiveV.allFinite());
1209  assert(m_computed.allFinite());
1210 #endif
1211 }//end deflation
1212 
1213 #ifndef __CUDACC__
1214 
1220 template<typename Derived>
1222 MatrixBase<Derived>::bdcSvd(unsigned int computationOptions) const
1223 {
1224  return BDCSVD<PlainObject>(*this, computationOptions);
1225 }
1226 #endif
1227 
1228 } // end namespace Eigen
1229 
1230 #endif
BDCSVD & compute(const MatrixType &matrix)
Method performing the decomposition of given matrix using current options.
Definition: BDCSVD.h:161
Used in JacobiSVD to indicate that the square matrix U is to be computed.
Definition: Constants.h:383
BDCSVD< PlainObject > bdcSvd(unsigned int computationOptions=0) const
Definition: BDCSVD.h:1222
A matrix or vector expression mapping an existing array of data.
Definition: Map.h:88
const MatrixUType & matrixU() const
Definition: SVDBase.h:83
Namespace containing all symbols from the Eigen library.
Definition: bench_norm.cpp:85
Definition: ForwardDeclarations.h:263
Holds information about the various numeric (i.e.
Definition: NumTraits.h:150
Definition: FFTW.cpp:65
Expression of a fixed-size or dynamic-size sub-vector.
Definition: ForwardDeclarations.h:87
BDCSVD(Index rows, Index cols, unsigned int computationOptions=0)
Default Constructor with memory preallocation.
Definition: BDCSVD.h:117
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void resize(Index rows, Index cols)
Resizes *this to a rows x cols matrix.
Definition: PlainObjectBase.h:273
Base class of SVD algorithms.
Definition: SVDBase.h:48
EIGEN_DEFAULT_DENSE_INDEX_TYPE Index
The Index type as used for the API.
Definition: Meta.h:33
Definition: Constants.h:235
BDCSVD & compute(const MatrixType &matrix, unsigned int computationOptions)
Method performing the decomposition of given matrix using custom options.
Definition: BDCSVD.h:237
BDCSVD(const MatrixType &matrix, unsigned int computationOptions=0)
Constructor performing the decomposition of given matrix.
Definition: BDCSVD.h:133
Definition: UpperBidiagonalization.h:20
EIGEN_DEVICE_FUNC Derived & setZero(Index size)
Resizes to the given size, and sets all coefficients in this expression to zero.
Definition: CwiseNullaryOp.h:515
class Bidiagonal Divide and Conquer SVD
Definition: ForwardDeclarations.h:259
A matrix or vector expression mapping an existing expression.
Definition: Ref.h:190
Definition: BandTriangularSolver.h:13
Expression of a fixed-size or dynamic-size block.
Definition: Block.h:103
Index nonzeroSingularValues() const
Definition: SVDBase.h:118
BDCSVD()
Default Constructor.
Definition: BDCSVD.h:107
Two-sided Jacobi SVD decomposition of a rectangular matrix.
Definition: ForwardDeclarations.h:258
const SingularValuesType & singularValues() const
Definition: SVDBase.h:111
const MatrixVType & matrixV() const
Definition: SVDBase.h:99
Expression of a diagonal/subdiagonal/superdiagonal in a matrix.
Definition: Diagonal.h:63
const int Dynamic
This value means that a positive quantity (e.g., a size) is not known at compile-time, and that instead the value is stored in some runtime variable.
Definition: Constants.h:21
Used in JacobiSVD to indicate that the square matrix V is to be computed.
Definition: Constants.h:387
The matrix class, also used for vectors and row-vectors.
Definition: Matrix.h:178
Definition: ForwardDeclarations.h:17