11 #ifndef EIGEN_FULLPIVOTINGHOUSEHOLDERQR_H 12 #define EIGEN_FULLPIVOTINGHOUSEHOLDERQR_H 26 template<
typename MatrixType>
29 typedef typename MatrixType::PlainObject ReturnType;
61 typedef _MatrixType MatrixType;
63 RowsAtCompileTime = MatrixType::RowsAtCompileTime,
64 ColsAtCompileTime = MatrixType::ColsAtCompileTime,
65 MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
66 MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
68 typedef typename MatrixType::Scalar Scalar;
69 typedef typename MatrixType::RealScalar RealScalar;
71 typedef typename MatrixType::StorageIndex StorageIndex;
74 typedef Matrix<StorageIndex, 1,
75 EIGEN_SIZE_MIN_PREFER_DYNAMIC(ColsAtCompileTime,RowsAtCompileTime),
RowMajor, 1,
76 EIGEN_SIZE_MIN_PREFER_FIXED(MaxColsAtCompileTime,MaxRowsAtCompileTime)> IntDiagSizeVectorType;
80 typedef typename MatrixType::PlainObject PlainObject;
90 m_rows_transpositions(),
91 m_cols_transpositions(),
94 m_isInitialized(false),
95 m_usePrescribedThreshold(false) {}
105 m_hCoeffs((
std::min)(rows,cols)),
106 m_rows_transpositions((
std::min)(rows,cols)),
107 m_cols_transpositions((
std::min)(rows,cols)),
108 m_cols_permutation(cols),
110 m_isInitialized(false),
111 m_usePrescribedThreshold(false) {}
125 template<
typename InputType>
127 : m_qr(matrix.rows(), matrix.cols()),
128 m_hCoeffs((
std::min)(matrix.rows(), matrix.cols())),
129 m_rows_transpositions((
std::min)(matrix.rows(), matrix.cols())),
130 m_cols_transpositions((
std::min)(matrix.rows(), matrix.cols())),
131 m_cols_permutation(matrix.cols()),
132 m_temp(matrix.cols()),
133 m_isInitialized(false),
134 m_usePrescribedThreshold(false)
145 template<
typename InputType>
147 : m_qr(matrix.derived()),
148 m_hCoeffs((
std::min)(matrix.rows(), matrix.cols())),
149 m_rows_transpositions((
std::min)(matrix.rows(), matrix.cols())),
150 m_cols_transpositions((
std::min)(matrix.rows(), matrix.cols())),
151 m_cols_permutation(matrix.cols()),
152 m_temp(matrix.cols()),
153 m_isInitialized(false),
154 m_usePrescribedThreshold(false)
174 template<
typename Rhs>
178 eigen_assert(m_isInitialized &&
"FullPivHouseholderQR is not initialized.");
184 MatrixQReturnType matrixQ(
void)
const;
190 eigen_assert(m_isInitialized &&
"FullPivHouseholderQR is not initialized.");
194 template<
typename InputType>
200 eigen_assert(m_isInitialized &&
"FullPivHouseholderQR is not initialized.");
201 return m_cols_permutation;
207 eigen_assert(m_isInitialized &&
"FullPivHouseholderQR is not initialized.");
208 return m_rows_transpositions;
224 typename MatrixType::RealScalar absDeterminant()
const;
238 typename MatrixType::RealScalar logAbsDeterminant()
const;
249 eigen_assert(m_isInitialized &&
"FullPivHouseholderQR is not initialized.");
250 RealScalar premultiplied_threshold = abs(m_maxpivot) * threshold();
252 for(
Index i = 0; i < m_nonzero_pivots; ++i)
253 result += (abs(m_qr.coeff(i,i)) > premultiplied_threshold);
265 eigen_assert(m_isInitialized &&
"FullPivHouseholderQR is not initialized.");
266 return cols() - rank();
278 eigen_assert(m_isInitialized &&
"FullPivHouseholderQR is not initialized.");
279 return rank() == cols();
291 eigen_assert(m_isInitialized &&
"FullPivHouseholderQR is not initialized.");
292 return rank() == rows();
303 eigen_assert(m_isInitialized &&
"FullPivHouseholderQR is not initialized.");
304 return isInjective() && isSurjective();
314 eigen_assert(m_isInitialized &&
"FullPivHouseholderQR is not initialized.");
318 inline Index rows()
const {
return m_qr.rows(); }
319 inline Index cols()
const {
return m_qr.cols(); }
325 const HCoeffsType&
hCoeffs()
const {
return m_hCoeffs; }
346 m_usePrescribedThreshold =
true;
347 m_prescribedThreshold = threshold;
361 m_usePrescribedThreshold =
false;
371 eigen_assert(m_isInitialized || m_usePrescribedThreshold);
372 return m_usePrescribedThreshold ? m_prescribedThreshold
387 eigen_assert(m_isInitialized &&
"LU is not initialized.");
388 return m_nonzero_pivots;
396 #ifndef EIGEN_PARSED_BY_DOXYGEN 397 template<
typename RhsType,
typename DstType>
399 void _solve_impl(
const RhsType &rhs, DstType &dst)
const;
404 static void check_template_parameters()
406 EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar);
409 void computeInPlace();
412 HCoeffsType m_hCoeffs;
413 IntDiagSizeVectorType m_rows_transpositions;
414 IntDiagSizeVectorType m_cols_transpositions;
415 PermutationType m_cols_permutation;
416 RowVectorType m_temp;
417 bool m_isInitialized, m_usePrescribedThreshold;
418 RealScalar m_prescribedThreshold, m_maxpivot;
419 Index m_nonzero_pivots;
420 RealScalar m_precision;
424 template<
typename MatrixType>
428 eigen_assert(m_isInitialized &&
"FullPivHouseholderQR is not initialized.");
429 eigen_assert(m_qr.rows() == m_qr.cols() &&
"You can't take the determinant of a non-square matrix!");
430 return abs(m_qr.diagonal().prod());
433 template<
typename MatrixType>
436 eigen_assert(m_isInitialized &&
"FullPivHouseholderQR is not initialized.");
437 eigen_assert(m_qr.rows() == m_qr.cols() &&
"You can't take the determinant of a non-square matrix!");
438 return m_qr.diagonal().cwiseAbs().array().log().sum();
447 template<
typename MatrixType>
448 template<
typename InputType>
456 template<
typename MatrixType>
459 check_template_parameters();
462 Index rows = m_qr.rows();
463 Index cols = m_qr.cols();
464 Index size = (std::min)(rows,cols);
467 m_hCoeffs.resize(size);
473 m_rows_transpositions.resize(size);
474 m_cols_transpositions.resize(size);
475 Index number_of_transpositions = 0;
477 RealScalar biggest(0);
479 m_nonzero_pivots = size;
480 m_maxpivot = RealScalar(0);
482 for (
Index k = 0; k < size; ++k)
484 Index row_of_biggest_in_corner, col_of_biggest_in_corner;
486 typedef typename Scoring::result_type Score;
488 Score score = m_qr.bottomRightCorner(rows-k, cols-k)
489 .unaryExpr(Scoring())
490 .maxCoeff(&row_of_biggest_in_corner, &col_of_biggest_in_corner);
491 row_of_biggest_in_corner += k;
492 col_of_biggest_in_corner += k;
494 if(k==0) biggest = biggest_in_corner;
497 if(internal::isMuchSmallerThan(biggest_in_corner, biggest, m_precision))
499 m_nonzero_pivots = k;
500 for(
Index i = k; i < size; i++)
502 m_rows_transpositions.coeffRef(i) = i;
503 m_cols_transpositions.coeffRef(i) = i;
504 m_hCoeffs.coeffRef(i) = Scalar(0);
509 m_rows_transpositions.coeffRef(k) = row_of_biggest_in_corner;
510 m_cols_transpositions.coeffRef(k) = col_of_biggest_in_corner;
511 if(k != row_of_biggest_in_corner) {
512 m_qr.row(k).tail(cols-k).swap(m_qr.row(row_of_biggest_in_corner).tail(cols-k));
513 ++number_of_transpositions;
515 if(k != col_of_biggest_in_corner) {
516 m_qr.col(k).swap(m_qr.col(col_of_biggest_in_corner));
517 ++number_of_transpositions;
521 m_qr.col(k).tail(rows-k).makeHouseholderInPlace(m_hCoeffs.coeffRef(k), beta);
522 m_qr.coeffRef(k,k) = beta;
525 if(abs(beta) > m_maxpivot) m_maxpivot = abs(beta);
527 m_qr.bottomRightCorner(rows-k, cols-k-1)
528 .applyHouseholderOnTheLeft(m_qr.col(k).tail(rows-k-1), m_hCoeffs.coeffRef(k), &m_temp.coeffRef(k+1));
531 m_cols_permutation.setIdentity(cols);
532 for(
Index k = 0; k < size; ++k)
533 m_cols_permutation.applyTranspositionOnTheRight(k, m_cols_transpositions.coeff(k));
535 m_det_pq = (number_of_transpositions%2) ? -1 : 1;
536 m_isInitialized =
true;
539 #ifndef EIGEN_PARSED_BY_DOXYGEN 540 template<
typename _MatrixType>
541 template<
typename RhsType,
typename DstType>
544 eigen_assert(rhs.rows() == rows());
545 const Index l_rank = rank();
555 typename RhsType::PlainObject c(rhs);
558 for (
Index k = 0; k < l_rank; ++k)
560 Index remainingSize = rows()-k;
561 c.row(k).swap(c.row(m_rows_transpositions.coeff(k)));
562 c.bottomRightCorner(remainingSize, rhs.cols())
563 .applyHouseholderOnTheLeft(m_qr.col(k).tail(remainingSize-1),
564 m_hCoeffs.coeff(k), &temp.coeffRef(0));
567 m_qr.topLeftCorner(l_rank, l_rank)
568 .template triangularView<Upper>()
569 .solveInPlace(c.topRows(l_rank));
571 for(
Index i = 0; i < l_rank; ++i) dst.row(m_cols_permutation.indices().coeff(i)) = c.row(i);
572 for(
Index i = l_rank; i < cols(); ++i) dst.row(m_cols_permutation.indices().coeff(i)).setZero();
578 template<
typename DstXprType,
typename MatrixType>
585 dst = src.nestedExpression().solve(MatrixType::Identity(src.rows(), src.cols()));
596 :
public ReturnByValue<FullPivHouseholderQRMatrixQReturnType<MatrixType> >
601 typedef Matrix<
typename MatrixType::Scalar, 1, MatrixType::RowsAtCompileTime,
RowMajor, 1,
602 MatrixType::MaxRowsAtCompileTime> WorkVectorType;
605 const HCoeffsType& hCoeffs,
606 const IntDiagSizeVectorType& rowsTranspositions)
609 m_rowsTranspositions(rowsTranspositions)
612 template <
typename ResultType>
613 void evalTo(ResultType& result)
const 615 const Index rows = m_qr.rows();
616 WorkVectorType workspace(rows);
617 evalTo(result, workspace);
620 template <
typename ResultType>
621 void evalTo(ResultType& result, WorkVectorType& workspace)
const 627 const Index rows = m_qr.rows();
628 const Index cols = m_qr.cols();
629 const Index size = (std::min)(rows, cols);
630 workspace.resize(rows);
631 result.setIdentity(rows, rows);
632 for (
Index k = size-1; k >= 0; k--)
634 result.block(k, k, rows-k, rows-k)
635 .applyHouseholderOnTheLeft(m_qr.col(k).tail(rows-k-1), conj(m_hCoeffs.coeff(k)), &workspace.coeffRef(k));
636 result.row(k).swap(result.row(m_rowsTranspositions.coeff(k)));
640 Index rows()
const {
return m_qr.rows(); }
641 Index cols()
const {
return m_qr.rows(); }
644 typename MatrixType::Nested m_qr;
645 typename HCoeffsType::Nested m_hCoeffs;
646 typename IntDiagSizeVectorType::Nested m_rowsTranspositions;
656 template<
typename MatrixType>
659 eigen_assert(m_isInitialized &&
"FullPivHouseholderQR is not initialized.");
667 template<
typename Derived>
676 #endif // EIGEN_FULLPIVOTINGHOUSEHOLDERQR_H FullPivHouseholderQR & setThreshold(Default_t)
Allows to come back to the default behavior, letting Eigen use its default formula for determining th...
Definition: FullPivHouseholderQR.h:359
bool isInvertible() const
Definition: FullPivHouseholderQR.h:301
const IntDiagSizeVectorType & rowsTranspositions() const
Definition: FullPivHouseholderQR.h:205
Householder rank-revealing QR decomposition of a matrix with full pivoting.
Definition: ForwardDeclarations.h:256
const Solve< FullPivHouseholderQR, Rhs > solve(const MatrixBase< Rhs > &b) const
This method finds a solution x to the equation Ax=b, where A is the matrix of which *this is the QR d...
Definition: FullPivHouseholderQR.h:176
const MatrixType & matrixQR() const
Definition: FullPivHouseholderQR.h:188
MatrixType::RealScalar logAbsDeterminant() const
Definition: FullPivHouseholderQR.h:434
Namespace containing all symbols from the Eigen library.
Definition: bench_norm.cpp:85
bool isSurjective() const
Definition: FullPivHouseholderQR.h:289
Holds information about the various numeric (i.e.
Definition: NumTraits.h:150
Index rank() const
Definition: FullPivHouseholderQR.h:246
Definition: UnaryFunctors.h:63
Definition: AssignmentFunctors.h:21
Definition: AssignEvaluator.h:753
Common base class for all classes T such that MatrixBase has an operator=(T) and a constructor Matrix...
Definition: EigenBase.h:28
Definition: AssignEvaluator.h:743
Definition: ReturnByValue.h:50
FullPivHouseholderQR(Index rows, Index cols)
Default Constructor with memory preallocation.
Definition: FullPivHouseholderQR.h:103
Expression of the inverse of another expression.
Definition: Inverse.h:43
bool isInjective() const
Definition: FullPivHouseholderQR.h:276
MatrixQReturnType matrixQ(void) const
Definition: FullPivHouseholderQR.h:657
FullPivHouseholderQR()
Default Constructor.
Definition: FullPivHouseholderQR.h:87
EIGEN_DEFAULT_DENSE_INDEX_TYPE Index
The Index type as used for the API.
Definition: Meta.h:33
Expression type for return value of FullPivHouseholderQR::matrixQ()
Definition: FullPivHouseholderQR.h:24
FullPivHouseholderQR(EigenBase< InputType > &matrix)
Constructs a QR factorization from a given matrix.
Definition: FullPivHouseholderQR.h:146
FullPivHouseholderQR & setThreshold(const RealScalar &threshold)
Allows to prescribe a threshold to be used by certain methods, such as rank(), who need to determine ...
Definition: FullPivHouseholderQR.h:344
const PermutationType & colsPermutation() const
Definition: FullPivHouseholderQR.h:198
Definition: BandTriangularSolver.h:13
FullPivHouseholderQR(const EigenBase< InputType > &matrix)
Constructs a QR factorization from a given matrix.
Definition: FullPivHouseholderQR.h:126
const Inverse< FullPivHouseholderQR > inverse() const
Definition: FullPivHouseholderQR.h:312
RealScalar threshold() const
Returns the threshold that will be used by certain methods such as rank().
Definition: FullPivHouseholderQR.h:369
RealScalar maxPivot() const
Definition: FullPivHouseholderQR.h:394
Storage order is row major (see TopicStorageOrders).
Definition: Constants.h:322
Pseudo expression representing a solving operation.
Definition: Solve.h:62
Generic expression where a coefficient-wise unary operator is applied to an expression.
Definition: CwiseUnaryOp.h:55
MatrixType::RealScalar absDeterminant() const
Definition: FullPivHouseholderQR.h:425
The matrix class, also used for vectors and row-vectors.
Definition: Matrix.h:178
const HCoeffsType & hCoeffs() const
Definition: FullPivHouseholderQR.h:325
const FullPivHouseholderQR< PlainObject > fullPivHouseholderQr() const
Definition: FullPivHouseholderQR.h:669
EIGEN_DEVICE_FUNC Derived & derived()
Definition: EigenBase.h:44
Base class for all dense matrices, vectors, and expressions.
Definition: MatrixBase.h:48
Definition: ForwardDeclarations.h:17
Definition: UnaryFunctors.h:71
Index nonzeroPivots() const
Definition: FullPivHouseholderQR.h:385
Index dimensionOfKernel() const
Definition: FullPivHouseholderQR.h:263