compbio
Quaternion.h
1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2008-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
5 // Copyright (C) 2009 Mathieu Gautier <mathieu.gautier@cea.fr>
6 //
7 // This Source Code Form is subject to the terms of the Mozilla
8 // Public License v. 2.0. If a copy of the MPL was not distributed
9 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
10 
11 #ifndef EIGEN_QUATERNION_H
12 #define EIGEN_QUATERNION_H
13 namespace Eigen {
14 
15 
16 /***************************************************************************
17 * Definition of QuaternionBase<Derived>
18 * The implementation is at the end of the file
19 ***************************************************************************/
20 
21 namespace internal {
22 template<typename Other,
23  int OtherRows=Other::RowsAtCompileTime,
24  int OtherCols=Other::ColsAtCompileTime>
26 }
27 
34 template<class Derived>
35 class QuaternionBase : public RotationBase<Derived, 3>
36 {
37  public:
38  typedef RotationBase<Derived, 3> Base;
39 
40  using Base::operator*;
41  using Base::derived;
42 
43  typedef typename internal::traits<Derived>::Scalar Scalar;
44  typedef typename NumTraits<Scalar>::Real RealScalar;
45  typedef typename internal::traits<Derived>::Coefficients Coefficients;
46  enum {
48  };
49 
50  // typedef typename Matrix<Scalar,4,1> Coefficients;
57 
58 
59 
61  EIGEN_DEVICE_FUNC inline Scalar x() const { return this->derived().coeffs().coeff(0); }
63  EIGEN_DEVICE_FUNC inline Scalar y() const { return this->derived().coeffs().coeff(1); }
65  EIGEN_DEVICE_FUNC inline Scalar z() const { return this->derived().coeffs().coeff(2); }
67  EIGEN_DEVICE_FUNC inline Scalar w() const { return this->derived().coeffs().coeff(3); }
68 
70  EIGEN_DEVICE_FUNC inline Scalar& x() { return this->derived().coeffs().coeffRef(0); }
72  EIGEN_DEVICE_FUNC inline Scalar& y() { return this->derived().coeffs().coeffRef(1); }
74  EIGEN_DEVICE_FUNC inline Scalar& z() { return this->derived().coeffs().coeffRef(2); }
76  EIGEN_DEVICE_FUNC inline Scalar& w() { return this->derived().coeffs().coeffRef(3); }
77 
79  EIGEN_DEVICE_FUNC inline const VectorBlock<const Coefficients,3> vec() const { return coeffs().template head<3>(); }
80 
82  EIGEN_DEVICE_FUNC inline VectorBlock<Coefficients,3> vec() { return coeffs().template head<3>(); }
83 
85  EIGEN_DEVICE_FUNC inline const typename internal::traits<Derived>::Coefficients& coeffs() const { return derived().coeffs(); }
86 
88  EIGEN_DEVICE_FUNC inline typename internal::traits<Derived>::Coefficients& coeffs() { return derived().coeffs(); }
89 
90  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE QuaternionBase<Derived>& operator=(const QuaternionBase<Derived>& other);
91  template<class OtherDerived> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived& operator=(const QuaternionBase<OtherDerived>& other);
92 
93 // disabled this copy operator as it is giving very strange compilation errors when compiling
94 // test_stdvector with GCC 4.4.2. This looks like a GCC bug though, so feel free to re-enable it if it's
95 // useful; however notice that we already have the templated operator= above and e.g. in MatrixBase
96 // we didn't have to add, in addition to templated operator=, such a non-templated copy operator.
97 // Derived& operator=(const QuaternionBase& other)
98 // { return operator=<Derived>(other); }
99 
100  EIGEN_DEVICE_FUNC Derived& operator=(const AngleAxisType& aa);
101  template<class OtherDerived> EIGEN_DEVICE_FUNC Derived& operator=(const MatrixBase<OtherDerived>& m);
102 
106  EIGEN_DEVICE_FUNC static inline Quaternion<Scalar> Identity() { return Quaternion<Scalar>(Scalar(1), Scalar(0), Scalar(0), Scalar(0)); }
107 
110  EIGEN_DEVICE_FUNC inline QuaternionBase& setIdentity() { coeffs() << Scalar(0), Scalar(0), Scalar(0), Scalar(1); return *this; }
111 
115  EIGEN_DEVICE_FUNC inline Scalar squaredNorm() const { return coeffs().squaredNorm(); }
116 
120  EIGEN_DEVICE_FUNC inline Scalar norm() const { return coeffs().norm(); }
121 
124  EIGEN_DEVICE_FUNC inline void normalize() { coeffs().normalize(); }
127  EIGEN_DEVICE_FUNC inline Quaternion<Scalar> normalized() const { return Quaternion<Scalar>(coeffs().normalized()); }
128 
134  template<class OtherDerived> EIGEN_DEVICE_FUNC inline Scalar dot(const QuaternionBase<OtherDerived>& other) const { return coeffs().dot(other.coeffs()); }
135 
136  template<class OtherDerived> EIGEN_DEVICE_FUNC Scalar angularDistance(const QuaternionBase<OtherDerived>& other) const;
137 
139  EIGEN_DEVICE_FUNC Matrix3 toRotationMatrix() const;
140 
142  template<typename Derived1, typename Derived2>
143  EIGEN_DEVICE_FUNC Derived& setFromTwoVectors(const MatrixBase<Derived1>& a, const MatrixBase<Derived2>& b);
144 
145  template<class OtherDerived> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Quaternion<Scalar> operator* (const QuaternionBase<OtherDerived>& q) const;
146  template<class OtherDerived> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived& operator*= (const QuaternionBase<OtherDerived>& q);
147 
149  EIGEN_DEVICE_FUNC Quaternion<Scalar> inverse() const;
150 
152  EIGEN_DEVICE_FUNC Quaternion<Scalar> conjugate() const;
153 
154  template<class OtherDerived> EIGEN_DEVICE_FUNC Quaternion<Scalar> slerp(const Scalar& t, const QuaternionBase<OtherDerived>& other) const;
155 
160  template<class OtherDerived>
161  EIGEN_DEVICE_FUNC bool isApprox(const QuaternionBase<OtherDerived>& other, const RealScalar& prec = NumTraits<Scalar>::dummy_precision()) const
162  { return coeffs().isApprox(other.coeffs(), prec); }
163 
165  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Vector3 _transformVector(const Vector3& v) const;
166 
172  template<typename NewScalarType>
173  EIGEN_DEVICE_FUNC inline typename internal::cast_return_type<Derived,Quaternion<NewScalarType> >::type cast() const
174  {
175  return typename internal::cast_return_type<Derived,Quaternion<NewScalarType> >::type(derived());
176  }
177 
178 #ifdef EIGEN_QUATERNIONBASE_PLUGIN
179 # include EIGEN_QUATERNIONBASE_PLUGIN
180 #endif
181 };
182 
183 /***************************************************************************
184 * Definition/implementation of Quaternion<Scalar>
185 ***************************************************************************/
186 
212 namespace internal {
213 template<typename _Scalar,int _Options>
214 struct traits<Quaternion<_Scalar,_Options> >
215 {
217  typedef _Scalar Scalar;
218  typedef Matrix<_Scalar,4,1,_Options> Coefficients;
219  enum{
221  Flags = LvalueBit
222  };
223 };
224 }
225 
226 template<typename _Scalar, int _Options>
227 class Quaternion : public QuaternionBase<Quaternion<_Scalar,_Options> >
228 {
229 public:
231  enum { NeedsAlignment = internal::traits<Quaternion>::Alignment>0 };
232 
233  typedef _Scalar Scalar;
234 
235  EIGEN_INHERIT_ASSIGNMENT_OPERATORS(Quaternion)
236  using Base::operator*=;
237 
238  typedef typename internal::traits<Quaternion>::Coefficients Coefficients;
239  typedef typename Base::AngleAxisType AngleAxisType;
240 
242  EIGEN_DEVICE_FUNC inline Quaternion() {}
243 
251  EIGEN_DEVICE_FUNC inline Quaternion(const Scalar& w, const Scalar& x, const Scalar& y, const Scalar& z) : m_coeffs(x, y, z, w){}
252 
254  EIGEN_DEVICE_FUNC explicit inline Quaternion(const Scalar* data) : m_coeffs(data) {}
255 
257  template<class Derived> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Quaternion(const QuaternionBase<Derived>& other) { this->Base::operator=(other); }
258 
260  EIGEN_DEVICE_FUNC explicit inline Quaternion(const AngleAxisType& aa) { *this = aa; }
261 
266  template<typename Derived>
267  EIGEN_DEVICE_FUNC explicit inline Quaternion(const MatrixBase<Derived>& other) { *this = other; }
268 
270  template<typename OtherScalar, int OtherOptions>
271  EIGEN_DEVICE_FUNC explicit inline Quaternion(const Quaternion<OtherScalar, OtherOptions>& other)
272  { m_coeffs = other.coeffs().template cast<Scalar>(); }
273 
274  EIGEN_DEVICE_FUNC static Quaternion UnitRandom();
275 
276  template<typename Derived1, typename Derived2>
277  EIGEN_DEVICE_FUNC static Quaternion FromTwoVectors(const MatrixBase<Derived1>& a, const MatrixBase<Derived2>& b);
278 
279  EIGEN_DEVICE_FUNC inline Coefficients& coeffs() { return m_coeffs;}
280  EIGEN_DEVICE_FUNC inline const Coefficients& coeffs() const { return m_coeffs;}
281 
282  EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF(bool(NeedsAlignment))
283 
284 #ifdef EIGEN_QUATERNION_PLUGIN
285 # include EIGEN_QUATERNION_PLUGIN
286 #endif
287 
288 protected:
289  Coefficients m_coeffs;
290 
291 #ifndef EIGEN_PARSED_BY_DOXYGEN
292  static EIGEN_STRONG_INLINE void _check_template_params()
293  {
294  EIGEN_STATIC_ASSERT( (_Options & DontAlign) == _Options,
295  INVALID_MATRIX_TEMPLATE_PARAMETERS)
296  }
297 #endif
298 };
299 
306 
307 /***************************************************************************
308 * Specialization of Map<Quaternion<Scalar>>
309 ***************************************************************************/
310 
311 namespace internal {
312  template<typename _Scalar, int _Options>
313  struct traits<Map<Quaternion<_Scalar>, _Options> > : traits<Quaternion<_Scalar, (int(_Options)&Aligned)==Aligned ? AutoAlign : DontAlign> >
314  {
315  typedef Map<Matrix<_Scalar,4,1>, _Options> Coefficients;
316  };
317 }
318 
319 namespace internal {
320  template<typename _Scalar, int _Options>
321  struct traits<Map<const Quaternion<_Scalar>, _Options> > : traits<Quaternion<_Scalar, (int(_Options)&Aligned)==Aligned ? AutoAlign : DontAlign> >
322  {
323  typedef Map<const Matrix<_Scalar,4,1>, _Options> Coefficients;
325  enum {
326  Flags = TraitsBase::Flags & ~LvalueBit
327  };
328  };
329 }
330 
342 template<typename _Scalar, int _Options>
343 class Map<const Quaternion<_Scalar>, _Options >
344  : public QuaternionBase<Map<const Quaternion<_Scalar>, _Options> >
345 {
346  public:
347  typedef QuaternionBase<Map<const Quaternion<_Scalar>, _Options> > Base;
348 
349  typedef _Scalar Scalar;
350  typedef typename internal::traits<Map>::Coefficients Coefficients;
351  EIGEN_INHERIT_ASSIGNMENT_OPERATORS(Map)
352  using Base::operator*=;
353 
360  EIGEN_DEVICE_FUNC explicit EIGEN_STRONG_INLINE Map(const Scalar* coeffs) : m_coeffs(coeffs) {}
361 
362  EIGEN_DEVICE_FUNC inline const Coefficients& coeffs() const { return m_coeffs;}
363 
364  protected:
365  const Coefficients m_coeffs;
366 };
367 
379 template<typename _Scalar, int _Options>
380 class Map<Quaternion<_Scalar>, _Options >
381  : public QuaternionBase<Map<Quaternion<_Scalar>, _Options> >
382 {
383  public:
384  typedef QuaternionBase<Map<Quaternion<_Scalar>, _Options> > Base;
385 
386  typedef _Scalar Scalar;
387  typedef typename internal::traits<Map>::Coefficients Coefficients;
388  EIGEN_INHERIT_ASSIGNMENT_OPERATORS(Map)
389  using Base::operator*=;
390 
397  EIGEN_DEVICE_FUNC explicit EIGEN_STRONG_INLINE Map(Scalar* coeffs) : m_coeffs(coeffs) {}
398 
399  EIGEN_DEVICE_FUNC inline Coefficients& coeffs() { return m_coeffs; }
400  EIGEN_DEVICE_FUNC inline const Coefficients& coeffs() const { return m_coeffs; }
401 
402  protected:
403  Coefficients m_coeffs;
404 };
405 
414 typedef Map<Quaternion<float>, Aligned> QuaternionMapAlignedf;
417 typedef Map<Quaternion<double>, Aligned> QuaternionMapAlignedd;
418 
419 /***************************************************************************
420 * Implementation of QuaternionBase methods
421 ***************************************************************************/
422 
423 // Generic Quaternion * Quaternion product
424 // This product can be specialized for a given architecture via the Arch template argument.
425 namespace internal {
426 template<int Arch, class Derived1, class Derived2, typename Scalar, int _Options> struct quat_product
427 {
428  EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE Quaternion<Scalar> run(const QuaternionBase<Derived1>& a, const QuaternionBase<Derived2>& b){
429  return Quaternion<Scalar>
430  (
431  a.w() * b.w() - a.x() * b.x() - a.y() * b.y() - a.z() * b.z(),
432  a.w() * b.x() + a.x() * b.w() + a.y() * b.z() - a.z() * b.y(),
433  a.w() * b.y() + a.y() * b.w() + a.z() * b.x() - a.x() * b.z(),
434  a.w() * b.z() + a.z() * b.w() + a.x() * b.y() - a.y() * b.x()
435  );
436  }
437 };
438 }
439 
441 template <class Derived>
442 template <class OtherDerived>
443 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Quaternion<typename internal::traits<Derived>::Scalar>
445 {
447  YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY)
448  return internal::quat_product<Architecture::Target, Derived, OtherDerived,
450  EIGEN_PLAIN_ENUM_MIN(internal::traits<Derived>::Alignment, internal::traits<OtherDerived>::Alignment)>::run(*this, other);
451 }
452 
454 template <class Derived>
455 template <class OtherDerived>
456 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived& QuaternionBase<Derived>::operator*= (const QuaternionBase<OtherDerived>& other)
457 {
458  derived() = derived() * other.derived();
459  return derived();
460 }
461 
469 template <class Derived>
470 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE typename QuaternionBase<Derived>::Vector3
472 {
473  // Note that this algorithm comes from the optimization by hand
474  // of the conversion to a Matrix followed by a Matrix/Vector product.
475  // It appears to be much faster than the common algorithm found
476  // in the literature (30 versus 39 flops). It also requires two
477  // Vector3 as temporaries.
478  Vector3 uv = this->vec().cross(v);
479  uv += uv;
480  return v + this->w() * uv + this->vec().cross(uv);
481 }
482 
483 template<class Derived>
484 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE QuaternionBase<Derived>& QuaternionBase<Derived>::operator=(const QuaternionBase<Derived>& other)
485 {
486  coeffs() = other.coeffs();
487  return derived();
488 }
489 
490 template<class Derived>
491 template<class OtherDerived>
492 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived& QuaternionBase<Derived>::operator=(const QuaternionBase<OtherDerived>& other)
493 {
494  coeffs() = other.coeffs();
495  return derived();
496 }
497 
500 template<class Derived>
501 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived& QuaternionBase<Derived>::operator=(const AngleAxisType& aa)
502 {
503  EIGEN_USING_STD_MATH(cos)
504  EIGEN_USING_STD_MATH(sin)
505  Scalar ha = Scalar(0.5)*aa.angle(); // Scalar(0.5) to suppress precision loss warnings
506  this->w() = cos(ha);
507  this->vec() = sin(ha) * aa.axis();
508  return derived();
509 }
510 
517 template<class Derived>
518 template<class MatrixDerived>
519 EIGEN_DEVICE_FUNC inline Derived& QuaternionBase<Derived>::operator=(const MatrixBase<MatrixDerived>& xpr)
520 {
522  YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY)
524  return derived();
525 }
526 
530 template<class Derived>
531 EIGEN_DEVICE_FUNC inline typename QuaternionBase<Derived>::Matrix3
533 {
534  // NOTE if inlined, then gcc 4.2 and 4.4 get rid of the temporary (not gcc 4.3 !!)
535  // if not inlined then the cost of the return by value is huge ~ +35%,
536  // however, not inlining this function is an order of magnitude slower, so
537  // it has to be inlined, and so the return by value is not an issue
538  Matrix3 res;
539 
540  const Scalar tx = Scalar(2)*this->x();
541  const Scalar ty = Scalar(2)*this->y();
542  const Scalar tz = Scalar(2)*this->z();
543  const Scalar twx = tx*this->w();
544  const Scalar twy = ty*this->w();
545  const Scalar twz = tz*this->w();
546  const Scalar txx = tx*this->x();
547  const Scalar txy = ty*this->x();
548  const Scalar txz = tz*this->x();
549  const Scalar tyy = ty*this->y();
550  const Scalar tyz = tz*this->y();
551  const Scalar tzz = tz*this->z();
552 
553  res.coeffRef(0,0) = Scalar(1)-(tyy+tzz);
554  res.coeffRef(0,1) = txy-twz;
555  res.coeffRef(0,2) = txz+twy;
556  res.coeffRef(1,0) = txy+twz;
557  res.coeffRef(1,1) = Scalar(1)-(txx+tzz);
558  res.coeffRef(1,2) = tyz-twx;
559  res.coeffRef(2,0) = txz-twy;
560  res.coeffRef(2,1) = tyz+twx;
561  res.coeffRef(2,2) = Scalar(1)-(txx+tyy);
562 
563  return res;
564 }
565 
576 template<class Derived>
577 template<typename Derived1, typename Derived2>
578 EIGEN_DEVICE_FUNC inline Derived& QuaternionBase<Derived>::setFromTwoVectors(const MatrixBase<Derived1>& a, const MatrixBase<Derived2>& b)
579 {
580  EIGEN_USING_STD_MATH(sqrt)
581  Vector3 v0 = a.normalized();
582  Vector3 v1 = b.normalized();
583  Scalar c = v1.dot(v0);
584 
585  // if dot == -1, vectors are nearly opposites
586  // => accurately compute the rotation axis by computing the
587  // intersection of the two planes. This is done by solving:
588  // x^T v0 = 0
589  // x^T v1 = 0
590  // under the constraint:
591  // ||x|| = 1
592  // which yields a singular value problem
593  if (c < Scalar(-1)+NumTraits<Scalar>::dummy_precision())
594  {
595  c = numext::maxi(c,Scalar(-1));
596  Matrix<Scalar,2,3> m; m << v0.transpose(), v1.transpose();
598  Vector3 axis = svd.matrixV().col(2);
599 
600  Scalar w2 = (Scalar(1)+c)*Scalar(0.5);
601  this->w() = sqrt(w2);
602  this->vec() = axis * sqrt(Scalar(1) - w2);
603  return derived();
604  }
605  Vector3 axis = v0.cross(v1);
606  Scalar s = sqrt((Scalar(1)+c)*Scalar(2));
607  Scalar invs = Scalar(1)/s;
608  this->vec() = axis * invs;
609  this->w() = s * Scalar(0.5);
610 
611  return derived();
612 }
613 
618 template<typename Scalar, int Options>
620 {
621  EIGEN_USING_STD_MATH(sqrt)
622  EIGEN_USING_STD_MATH(sin)
623  EIGEN_USING_STD_MATH(cos)
624  const Scalar u1 = internal::random<Scalar>(0, 1),
625  u2 = internal::random<Scalar>(0, 2*EIGEN_PI),
626  u3 = internal::random<Scalar>(0, 2*EIGEN_PI);
627  const Scalar a = sqrt(1 - u1),
628  b = sqrt(u1);
629  return Quaternion (a * sin(u2), a * cos(u2), b * sin(u3), b * cos(u3));
630 }
631 
632 
643 template<typename Scalar, int Options>
644 template<typename Derived1, typename Derived2>
646 {
647  Quaternion quat;
648  quat.setFromTwoVectors(a, b);
649  return quat;
650 }
651 
652 
659 template <class Derived>
661 {
662  // FIXME should this function be called multiplicativeInverse and conjugate() be called inverse() or opposite() ??
663  Scalar n2 = this->squaredNorm();
664  if (n2 > Scalar(0))
665  return Quaternion<Scalar>(conjugate().coeffs() / n2);
666  else
667  {
668  // return an invalid result to flag the error
669  return Quaternion<Scalar>(Coefficients::Zero());
670  }
671 }
672 
673 // Generic conjugate of a Quaternion
674 namespace internal {
675 template<int Arch, class Derived, typename Scalar, int _Options> struct quat_conj
676 {
677  EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE Quaternion<Scalar> run(const QuaternionBase<Derived>& q){
678  return Quaternion<Scalar>(q.w(),-q.x(),-q.y(),-q.z());
679  }
680 };
681 }
682 
689 template <class Derived>
692 {
693  return internal::quat_conj<Architecture::Target, Derived,
696 
697 }
698 
702 template <class Derived>
703 template <class OtherDerived>
704 EIGEN_DEVICE_FUNC inline typename internal::traits<Derived>::Scalar
706 {
707  EIGEN_USING_STD_MATH(atan2)
708  Quaternion<Scalar> d = (*this) * other.conjugate();
709  return Scalar(2) * atan2( d.vec().norm(), numext::abs(d.w()) );
710 }
711 
712 
713 
720 template <class Derived>
721 template <class OtherDerived>
724 {
725  EIGEN_USING_STD_MATH(acos)
726  EIGEN_USING_STD_MATH(sin)
727  const Scalar one = Scalar(1) - NumTraits<Scalar>::epsilon();
728  Scalar d = this->dot(other);
729  Scalar absD = numext::abs(d);
730 
731  Scalar scale0;
732  Scalar scale1;
733 
734  if(absD>=one)
735  {
736  scale0 = Scalar(1) - t;
737  scale1 = t;
738  }
739  else
740  {
741  // theta is the angle between the 2 quaternions
742  Scalar theta = acos(absD);
743  Scalar sinTheta = sin(theta);
744 
745  scale0 = sin( ( Scalar(1) - t ) * theta) / sinTheta;
746  scale1 = sin( ( t * theta) ) / sinTheta;
747  }
748  if(d<Scalar(0)) scale1 = -scale1;
749 
750  return Quaternion<Scalar>(scale0 * coeffs() + scale1 * other.coeffs());
751 }
752 
753 namespace internal {
754 
755 // set from a rotation matrix
756 template<typename Other>
757 struct quaternionbase_assign_impl<Other,3,3>
758 {
759  typedef typename Other::Scalar Scalar;
760  template<class Derived> EIGEN_DEVICE_FUNC static inline void run(QuaternionBase<Derived>& q, const Other& a_mat)
761  {
762  const typename internal::nested_eval<Other,2>::type mat(a_mat);
763  EIGEN_USING_STD_MATH(sqrt)
764  // This algorithm comes from "Quaternion Calculus and Fast Animation",
765  // Ken Shoemake, 1987 SIGGRAPH course notes
766  Scalar t = mat.trace();
767  if (t > Scalar(0))
768  {
769  t = sqrt(t + Scalar(1.0));
770  q.w() = Scalar(0.5)*t;
771  t = Scalar(0.5)/t;
772  q.x() = (mat.coeff(2,1) - mat.coeff(1,2)) * t;
773  q.y() = (mat.coeff(0,2) - mat.coeff(2,0)) * t;
774  q.z() = (mat.coeff(1,0) - mat.coeff(0,1)) * t;
775  }
776  else
777  {
778  Index i = 0;
779  if (mat.coeff(1,1) > mat.coeff(0,0))
780  i = 1;
781  if (mat.coeff(2,2) > mat.coeff(i,i))
782  i = 2;
783  Index j = (i+1)%3;
784  Index k = (j+1)%3;
785 
786  t = sqrt(mat.coeff(i,i)-mat.coeff(j,j)-mat.coeff(k,k) + Scalar(1.0));
787  q.coeffs().coeffRef(i) = Scalar(0.5) * t;
788  t = Scalar(0.5)/t;
789  q.w() = (mat.coeff(k,j)-mat.coeff(j,k))*t;
790  q.coeffs().coeffRef(j) = (mat.coeff(j,i)+mat.coeff(i,j))*t;
791  q.coeffs().coeffRef(k) = (mat.coeff(k,i)+mat.coeff(i,k))*t;
792  }
793  }
794 };
795 
796 // set from a vector of coefficients assumed to be a quaternion
797 template<typename Other>
798 struct quaternionbase_assign_impl<Other,4,1>
799 {
800  typedef typename Other::Scalar Scalar;
801  template<class Derived> EIGEN_DEVICE_FUNC static inline void run(QuaternionBase<Derived>& q, const Other& vec)
802  {
803  q.coeffs() = vec;
804  }
805 };
806 
807 } // end namespace internal
808 
809 } // end namespace Eigen
810 
811 #endif // EIGEN_QUATERNION_H
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Map(const Scalar *coeffs)
Constructs a Mapped Quaternion object from the pointer coeffs.
Definition: Quaternion.h:360
Definition: XprHelper.h:489
Don&#39;t require alignment for the matrix itself (the array of coefficients, if dynamically allocated...
Definition: Constants.h:326
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Quaternion(const QuaternionBase< Derived > &other)
Copy constructor.
Definition: Quaternion.h:257
EIGEN_DEVICE_FUNC const VectorBlock< const Coefficients, 3 > vec() const
Definition: Quaternion.h:79
A matrix or vector expression mapping an existing array of data.
Definition: Map.h:88
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived & operator*=(const QuaternionBase< OtherDerived > &q)
Definition: Quaternion.h:456
Matrix< Scalar, 3, 1 > Vector3
the type of a 3D vector
Definition: Quaternion.h:52
Definition: Meta.h:63
Quaternion< double > Quaterniond
double precision quaternion type
Definition: Quaternion.h:305
const unsigned int LvalueBit
Means the expression has a coeffRef() method, i.e.
Definition: Constants.h:139
Namespace containing all symbols from the Eigen library.
Definition: bench_norm.cpp:85
EIGEN_DEVICE_FUNC Scalar x() const
Definition: Quaternion.h:61
EIGEN_DEVICE_FUNC Quaternion(const Scalar &w, const Scalar &x, const Scalar &y, const Scalar &z)
Constructs and initializes the quaternion from its four coefficients w, x, y and z...
Definition: Quaternion.h:251
Definition: Quaternion.h:675
Holds information about the various numeric (i.e.
Definition: NumTraits.h:150
EIGEN_DEVICE_FUNC const PlainObject normalized() const
Definition: Dot.h:120
EIGEN_DEVICE_FUNC Scalar w() const
Definition: Quaternion.h:67
AngleAxis< Scalar > AngleAxisType
the equivalent angle-axis type
Definition: Quaternion.h:56
EIGEN_DEVICE_FUNC Scalar z() const
Definition: Quaternion.h:65
EIGEN_DEVICE_FUNC Scalar & y()
Definition: Quaternion.h:72
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar & coeffRef(Index rowId, Index colId)
This is an overloaded version of DenseCoeffsBase<Derived,WriteAccessors>::coeffRef(Index,Index) const provided to by-pass the creation of an evaluator of the expression, thus saving compilation efforts.
Definition: PlainObjectBase.h:177
EIGEN_DEVICE_FUNC Quaternion(const MatrixBase< Derived > &other)
Constructs and initializes a quaternion from either:
Definition: Quaternion.h:267
EIGEN_DEVICE_FUNC Derived & setFromTwoVectors(const MatrixBase< Derived1 > &a, const MatrixBase< Derived2 > &b)
Sets *this to be a quaternion representing a rotation between the two arbitrary vectors a and b...
Definition: Quaternion.h:578
Expression of a fixed-size or dynamic-size sub-vector.
Definition: ForwardDeclarations.h:87
static EIGEN_DEVICE_FUNC Quaternion< Scalar > Identity()
Definition: Quaternion.h:106
EIGEN_DEVICE_FUNC void normalize()
Normalizes the quaternion *this.
Definition: Quaternion.h:124
EIGEN_DEVICE_FUNC VectorBlock< Coefficients, 3 > vec()
Definition: Quaternion.h:82
EIGEN_DEVICE_FUNC bool isApprox(const QuaternionBase< OtherDerived > &other, const RealScalar &prec=NumTraits< Scalar >::dummy_precision()) const
Definition: Quaternion.h:161
EIGEN_DEVICE_FUNC internal::traits< Derived >::Coefficients & coeffs()
Definition: Quaternion.h:88
EIGEN_DEVICE_FUNC Quaternion< Scalar > conjugate() const
Definition: Quaternion.h:691
EIGEN_DEVICE_FUNC Scalar y() const
Definition: Quaternion.h:63
EIGEN_DEVICE_FUNC Scalar angle() const
Definition: AngleAxis.h:91
EIGEN_DEFAULT_DENSE_INDEX_TYPE Index
The Index type as used for the API.
Definition: Meta.h:33
EIGEN_DEVICE_FUNC Quaternion(const Scalar *data)
Constructs and initialize a quaternion from the array data.
Definition: Quaternion.h:254
EIGEN_DEVICE_FUNC Scalar norm() const
Definition: Quaternion.h:120
EIGEN_DEVICE_FUNC Quaternion< Scalar > inverse() const
Definition: Quaternion.h:660
Common base class for compact rotation representations.
Definition: ForwardDeclarations.h:266
Definition: Constants.h:235
EIGEN_DEVICE_FUNC const internal::traits< Derived >::Coefficients & coeffs() const
Definition: Quaternion.h:85
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Map(Scalar *coeffs)
Constructs a Mapped Quaternion object from the pointer coeffs.
Definition: Quaternion.h:397
EIGEN_DEVICE_FUNC Quaternion(const Quaternion< OtherScalar, OtherOptions > &other)
Explicit copy constructor with scalar conversion.
Definition: Quaternion.h:271
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Vector3 _transformVector(const Vector3 &v) const
return the result vector of v through the rotation
Definition: Quaternion.h:471
Definition: ForwardDeclarations.h:268
EIGEN_DEVICE_FUNC Quaternion(const AngleAxisType &aa)
Constructs and initializes a quaternion from the angle-axis aa.
Definition: Quaternion.h:260
EIGEN_DEVICE_FUNC QuaternionBase & setIdentity()
Definition: Quaternion.h:110
EIGEN_DEVICE_FUNC Scalar & z()
Definition: Quaternion.h:74
EIGEN_DEVICE_FUNC const Vector3 & axis() const
Definition: AngleAxis.h:96
Map< Quaternion< float >, 0 > QuaternionMapf
Map an unaligned array of single precision scalars as a quaternion.
Definition: Quaternion.h:408
Definition: BandTriangularSolver.h:13
EIGEN_DEVICE_FUNC internal::cast_return_type< Derived, Quaternion< NewScalarType > >::type cast() const
Definition: Quaternion.h:173
EIGEN_DEVICE_FUNC Quaternion()
Default constructor leaving the quaternion uninitialized.
Definition: Quaternion.h:242
Definition: Quaternion.h:426
Definition: ForwardDeclarations.h:273
EIGEN_DEVICE_FUNC Scalar dot(const QuaternionBase< OtherDerived > &other) const
Definition: Quaternion.h:134
Map< Quaternion< double >, 0 > QuaternionMapd
Map an unaligned array of double precision scalars as a quaternion.
Definition: Quaternion.h:411
Two-sided Jacobi SVD decomposition of a rectangular matrix.
Definition: ForwardDeclarations.h:258
Map< Quaternion< float >, Aligned > QuaternionMapAlignedf
Map a 16-byte aligned array of single precision scalars as a quaternion.
Definition: Quaternion.h:414
EIGEN_DEVICE_FUNC Scalar squaredNorm() const
Definition: Quaternion.h:115
const MatrixVType & matrixV() const
Definition: SVDBase.h:99
EIGEN_DEVICE_FUNC Scalar & w()
Definition: Quaternion.h:76
EIGEN_DEVICE_FUNC Matrix3 toRotationMatrix() const
Convert the quaternion to a 3x3 rotation matrix.
Definition: Quaternion.h:532
Matrix< Scalar, 3, 3 > Matrix3
the equivalent rotation matrix type
Definition: Quaternion.h:54
Generic expression where a coefficient-wise unary operator is applied to an expression.
Definition: CwiseUnaryOp.h:55
Used in JacobiSVD to indicate that the square matrix V is to be computed.
Definition: Constants.h:387
EIGEN_DEVICE_FUNC Scalar & x()
Definition: Quaternion.h:70
static EIGEN_DEVICE_FUNC Quaternion UnitRandom()
Definition: Quaternion.h:619
Base class for all dense matrices, vectors, and expressions.
Definition: MatrixBase.h:48
Definition: ForwardDeclarations.h:270
Definition: ForwardDeclarations.h:17
Quaternion< float > Quaternionf
single precision quaternion type
Definition: Quaternion.h:302
Map< Quaternion< double >, Aligned > QuaternionMapAlignedd
Map a 16-byte aligned array of double precision scalars as a quaternion.
Definition: Quaternion.h:417
EIGEN_DEVICE_FUNC Quaternion< Scalar > normalized() const
Definition: Quaternion.h:127