compbio
|
LU decomposition of a matrix with partial pivoting, and related features. More...
#include <PartialPivLU.h>
Public Types | |
enum | { MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime, MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime } |
typedef _MatrixType | MatrixType |
typedef SolverBase< PartialPivLU > | Base |
typedef PermutationMatrix< RowsAtCompileTime, MaxRowsAtCompileTime > | PermutationType |
typedef Transpositions< RowsAtCompileTime, MaxRowsAtCompileTime > | TranspositionType |
typedef MatrixType::PlainObject | PlainObject |
![]() | |
enum | |
typedef EigenBase< PartialPivLU< _MatrixType > > | Base |
typedef internal::traits< PartialPivLU< _MatrixType > >::Scalar | Scalar |
typedef Scalar | CoeffReturnType |
typedef internal::add_const< Transpose< const PartialPivLU< _MatrixType > > >::type | ConstTransposeReturnType |
typedef internal::conditional< NumTraits< Scalar >::IsComplex, CwiseUnaryOp< internal::scalar_conjugate_op< Scalar >, ConstTransposeReturnType >, ConstTransposeReturnType >::type | AdjointReturnType |
![]() | |
typedef Eigen::Index | Index |
The interface type of indices. More... | |
typedef internal::traits< Derived >::StorageKind | StorageKind |
Public Member Functions | |
PartialPivLU () | |
Default Constructor. More... | |
PartialPivLU (Index size) | |
Default Constructor with memory preallocation. More... | |
template<typename InputType > | |
PartialPivLU (const EigenBase< InputType > &matrix) | |
Constructor. More... | |
template<typename InputType > | |
PartialPivLU (EigenBase< InputType > &matrix) | |
Constructor for inplace decomposition . More... | |
template<typename InputType > | |
PartialPivLU & | compute (const EigenBase< InputType > &matrix) |
const MatrixType & | matrixLU () const |
const PermutationType & | permutationP () const |
template<typename Rhs > | |
const Solve< PartialPivLU, Rhs > | solve (const MatrixBase< Rhs > &b) const |
This method returns the solution x to the equation Ax=b, where A is the matrix of which *this is the LU decomposition. More... | |
RealScalar | rcond () const |
const Inverse< PartialPivLU > | inverse () const |
Scalar | determinant () const |
MatrixType | reconstructedMatrix () const |
Index | rows () const |
Index | cols () const |
template<typename RhsType , typename DstType > | |
EIGEN_DEVICE_FUNC void | _solve_impl (const RhsType &rhs, DstType &dst) const |
template<bool Conjugate, typename RhsType , typename DstType > | |
EIGEN_DEVICE_FUNC void | _solve_impl_transposed (const RhsType &rhs, DstType &dst) const |
![]() | |
SolverBase () | |
Default constructor. | |
const Solve< PartialPivLU< _MatrixType >, Rhs > | solve (const MatrixBase< Rhs > &b) const |
ConstTransposeReturnType | transpose () const |
AdjointReturnType | adjoint () const |
![]() | |
EIGEN_DEVICE_FUNC Derived & | derived () |
EIGEN_DEVICE_FUNC const Derived & | derived () const |
EIGEN_DEVICE_FUNC Derived & | const_cast_derived () const |
EIGEN_DEVICE_FUNC const Derived & | const_derived () const |
EIGEN_DEVICE_FUNC Index | rows () const |
EIGEN_DEVICE_FUNC Index | cols () const |
EIGEN_DEVICE_FUNC Index | size () const |
template<typename Dest > | |
EIGEN_DEVICE_FUNC void | evalTo (Dest &dst) const |
template<typename Dest > | |
EIGEN_DEVICE_FUNC void | addTo (Dest &dst) const |
template<typename Dest > | |
EIGEN_DEVICE_FUNC void | subTo (Dest &dst) const |
template<typename Dest > | |
EIGEN_DEVICE_FUNC void | applyThisOnTheRight (Dest &dst) const |
template<typename Dest > | |
EIGEN_DEVICE_FUNC void | applyThisOnTheLeft (Dest &dst) const |
Protected Member Functions | |
void | compute () |
Static Protected Member Functions | |
static void | check_template_parameters () |
Protected Attributes | |
MatrixType | m_lu |
PermutationType | m_p |
TranspositionType | m_rowsTranspositions |
RealScalar | m_l1_norm |
signed char | m_det_p |
bool | m_isInitialized |
LU decomposition of a matrix with partial pivoting, and related features.
_MatrixType | the type of the matrix of which we are computing the LU decomposition |
This class represents a LU decomposition of a square invertible matrix, with partial pivoting: the matrix A is decomposed as A = PLU where L is unit-lower-triangular, U is upper-triangular, and P is a permutation matrix.
Typically, partial pivoting LU decomposition is only considered numerically stable for square invertible matrices. Thus LAPACK's dgesv and dgesvx require the matrix to be square and invertible. The present class does the same. It will assert that the matrix is square, but it won't (actually it can't) check that the matrix is invertible: it is your task to check that you only use this decomposition on invertible matrices.
The guaranteed safe alternative, working for all matrices, is the full pivoting LU decomposition, provided by class FullPivLU.
This is not a rank-revealing LU decomposition. Many features are intentionally absent from this class, such as rank computation. If you need these features, use class FullPivLU.
This LU decomposition is suitable to invert invertible matrices. It is what MatrixBase::inverse() uses in the general case. On the other hand, it is not suitable to determine whether a given matrix is invertible.
The data of the LU decomposition can be directly accessed through the methods matrixLU(), permutationP().
This class supports the inplace decomposition mechanism.
Eigen::PartialPivLU< MatrixType >::PartialPivLU | ( | ) |
Default Constructor.
The default constructor is useful in cases in which the user intends to perform decompositions via PartialPivLU::compute(const MatrixType&).
|
explicit |
Default Constructor with memory preallocation.
Like the default constructor but with preallocation of the internal data according to the specified problem size.
|
explicit |
Constructor.
matrix | the matrix of which to compute the LU decomposition. |
|
explicit |
Constructor for inplace decomposition .
matrix | the matrix of which to compute the LU decomposition. |
PartialPivLU< MatrixType >::Scalar Eigen::PartialPivLU< MatrixType >::determinant | ( | ) | const |
|
inline |
|
inline |
|
inline |
|
inline |
*this
is the LU decomposition. MatrixType Eigen::PartialPivLU< MatrixType >::reconstructedMatrix | ( | ) | const |
|
inline |
This method returns the solution x to the equation Ax=b, where A is the matrix of which *this is the LU decomposition.
b | the right-hand-side of the equation to solve. Can be a vector or a matrix, the only requirement in order for the equation to make sense is that b.rows()==A.rows(), where A is the matrix of which *this is the LU decomposition. |
Example:
Output:
Since this PartialPivLU class assumes anyway that the matrix A is invertible, the solution theoretically exists and is unique regardless of b.