compbio
Public Types | Public Member Functions | Protected Member Functions | Protected Attributes | List of all members
Eigen::PolynomialSolverBase< _Scalar, _Deg > Class Template Reference

Defined to be inherited by polynomial solvers: it provides convenient methods such as. More...

#include <PolynomialSolver.h>

Inheritance diagram for Eigen::PolynomialSolverBase< _Scalar, _Deg >:
Eigen::PolynomialSolver< _Scalar, _Deg >

Public Types

typedef _Scalar Scalar
 
typedef NumTraits< Scalar >::Real RealScalar
 
typedef std::complex< RealScalar > RootType
 
typedef Matrix< RootType, _Deg, 1 > RootsType
 
typedef DenseIndex Index
 

Public Member Functions

template<typename OtherPolynomial >
 PolynomialSolverBase (const OtherPolynomial &poly)
 
const RootsTyperoots () const
 
template<typename Stl_back_insertion_sequence >
void realRoots (Stl_back_insertion_sequence &bi_seq, const RealScalar &absImaginaryThreshold=NumTraits< Scalar >::dummy_precision()) const
 Clear and fills the back insertion sequence with the real roots of the polynomial i.e. More...
 
const RootType & greatestRoot () const
 
const RootType & smallestRoot () const
 
const RealScalar & absGreatestRealRoot (bool &hasArealRoot, const RealScalar &absImaginaryThreshold=NumTraits< Scalar >::dummy_precision()) const
 
const RealScalar & absSmallestRealRoot (bool &hasArealRoot, const RealScalar &absImaginaryThreshold=NumTraits< Scalar >::dummy_precision()) const
 
const RealScalar & greatestRealRoot (bool &hasArealRoot, const RealScalar &absImaginaryThreshold=NumTraits< Scalar >::dummy_precision()) const
 
const RealScalar & smallestRealRoot (bool &hasArealRoot, const RealScalar &absImaginaryThreshold=NumTraits< Scalar >::dummy_precision()) const
 

Protected Member Functions

template<typename OtherPolynomial >
void setPolynomial (const OtherPolynomial &poly)
 
template<typename squaredNormBinaryPredicate >
const RootType & selectComplexRoot_withRespectToNorm (squaredNormBinaryPredicate &pred) const
 
template<typename squaredRealPartBinaryPredicate >
const RealScalar & selectRealRoot_withRespectToAbsRealPart (squaredRealPartBinaryPredicate &pred, bool &hasArealRoot, const RealScalar &absImaginaryThreshold=NumTraits< Scalar >::dummy_precision()) const
 
template<typename RealPartBinaryPredicate >
const RealScalar & selectRealRoot_withRespectToRealPart (RealPartBinaryPredicate &pred, bool &hasArealRoot, const RealScalar &absImaginaryThreshold=NumTraits< Scalar >::dummy_precision()) const
 

Protected Attributes

RootsType m_roots
 

Detailed Description

template<typename _Scalar, int _Deg>
class Eigen::PolynomialSolverBase< _Scalar, _Deg >

Defined to be inherited by polynomial solvers: it provides convenient methods such as.

It stores the set of roots as a vector of complexes.

Member Function Documentation

§ absGreatestRealRoot()

template<typename _Scalar, int _Deg>
const RealScalar& Eigen::PolynomialSolverBase< _Scalar, _Deg >::absGreatestRealRoot ( bool &  hasArealRoot,
const RealScalar &  absImaginaryThreshold = NumTraits<Scalar>::dummy_precision() 
) const
inline
Returns
a real root with greatest absolute magnitude. A real root is defined as the real part of a complex root with absolute imaginary part smallest than absImaginaryThreshold. absImaginaryThreshold takes the dummy_precision associated with the _Scalar template parameter of the PolynomialSolver class as the default value. If no real root is found the boolean hasArealRoot is set to false and the real part of the root with smallest absolute imaginary part is returned instead.
Parameters
[out]hasArealRoot: boolean true if a real root is found according to the absImaginaryThreshold criterion, false otherwise.
[in]absImaginaryThreshold: threshold on the absolute imaginary part to decide whether or not a root is real.

§ absSmallestRealRoot()

template<typename _Scalar, int _Deg>
const RealScalar& Eigen::PolynomialSolverBase< _Scalar, _Deg >::absSmallestRealRoot ( bool &  hasArealRoot,
const RealScalar &  absImaginaryThreshold = NumTraits<Scalar>::dummy_precision() 
) const
inline
Returns
a real root with smallest absolute magnitude. A real root is defined as the real part of a complex root with absolute imaginary part smallest than absImaginaryThreshold. absImaginaryThreshold takes the dummy_precision associated with the _Scalar template parameter of the PolynomialSolver class as the default value. If no real root is found the boolean hasArealRoot is set to false and the real part of the root with smallest absolute imaginary part is returned instead.
Parameters
[out]hasArealRoot: boolean true if a real root is found according to the absImaginaryThreshold criterion, false otherwise.
[in]absImaginaryThreshold: threshold on the absolute imaginary part to decide whether or not a root is real.

§ greatestRealRoot()

template<typename _Scalar, int _Deg>
const RealScalar& Eigen::PolynomialSolverBase< _Scalar, _Deg >::greatestRealRoot ( bool &  hasArealRoot,
const RealScalar &  absImaginaryThreshold = NumTraits<Scalar>::dummy_precision() 
) const
inline
Returns
the real root with greatest value. A real root is defined as the real part of a complex root with absolute imaginary part smallest than absImaginaryThreshold. absImaginaryThreshold takes the dummy_precision associated with the _Scalar template parameter of the PolynomialSolver class as the default value. If no real root is found the boolean hasArealRoot is set to false and the real part of the root with smallest absolute imaginary part is returned instead.
Parameters
[out]hasArealRoot: boolean true if a real root is found according to the absImaginaryThreshold criterion, false otherwise.
[in]absImaginaryThreshold: threshold on the absolute imaginary part to decide whether or not a root is real.

§ greatestRoot()

template<typename _Scalar, int _Deg>
const RootType& Eigen::PolynomialSolverBase< _Scalar, _Deg >::greatestRoot ( ) const
inline
Returns
the complex root with greatest norm.

§ realRoots()

template<typename _Scalar, int _Deg>
template<typename Stl_back_insertion_sequence >
void Eigen::PolynomialSolverBase< _Scalar, _Deg >::realRoots ( Stl_back_insertion_sequence &  bi_seq,
const RealScalar &  absImaginaryThreshold = NumTraits<Scalar>::dummy_precision() 
) const
inline

Clear and fills the back insertion sequence with the real roots of the polynomial i.e.

the real part of the complex roots that have an imaginary part which absolute value is smaller than absImaginaryThreshold. absImaginaryThreshold takes the dummy_precision associated with the _Scalar template parameter of the PolynomialSolver class as the default value.

Parameters
[out]bi_seq: the back insertion sequence (stl concept)
[in]absImaginaryThreshold: the maximum bound of the imaginary part of a complex number that is considered as real.

§ roots()

template<typename _Scalar, int _Deg>
const RootsType& Eigen::PolynomialSolverBase< _Scalar, _Deg >::roots ( ) const
inline
Returns
the complex roots of the polynomial

§ smallestRealRoot()

template<typename _Scalar, int _Deg>
const RealScalar& Eigen::PolynomialSolverBase< _Scalar, _Deg >::smallestRealRoot ( bool &  hasArealRoot,
const RealScalar &  absImaginaryThreshold = NumTraits<Scalar>::dummy_precision() 
) const
inline
Returns
the real root with smallest value. A real root is defined as the real part of a complex root with absolute imaginary part smallest than absImaginaryThreshold. absImaginaryThreshold takes the dummy_precision associated with the _Scalar template parameter of the PolynomialSolver class as the default value. If no real root is found the boolean hasArealRoot is set to false and the real part of the root with smallest absolute imaginary part is returned instead.
Parameters
[out]hasArealRoot: boolean true if a real root is found according to the absImaginaryThreshold criterion, false otherwise.
[in]absImaginaryThreshold: threshold on the absolute imaginary part to decide whether or not a root is real.

§ smallestRoot()

template<typename _Scalar, int _Deg>
const RootType& Eigen::PolynomialSolverBase< _Scalar, _Deg >::smallestRoot ( ) const
inline
Returns
the complex root with smallest norm.

The documentation for this class was generated from the following file: