[P]arallel [Hi]gh-order [Li]brary for [P]DEs
Latest
Parallel High-Order Library for PDEs through hp-adaptive Discontinuous Galerkin methods
|
Parameters related to the linear solver. More...
#include <parameters_linear_solver.h>
Public Types | |
enum | LinearSolverEnum { direct, gmres } |
Types of linear solvers available. More... | |
Public Member Functions | |
void | parse_parameters (dealii::ParameterHandler &prm) |
Parses input file and sets the variables. | |
Static Public Member Functions | |
static void | declare_parameters (dealii::ParameterHandler &prm) |
Declares the possible variables and sets the defaults. | |
Public Attributes | |
OutputEnum | linear_solver_output |
Can either be verbose or quiet. More... | |
LinearSolverEnum | linear_solver_type |
direct or gmres. | |
double | ilut_drop |
Threshold to drop terms close to zero. | |
double | ilut_rtol |
Multiplies diagonal by ilut_rtol for more diagonal dominance. | |
double | ilut_atol |
Add ilu_rtol to diagonal for more diagonal dominance. | |
int | ilut_fill |
ILU fill-in. | |
double | linear_residual |
Tolerance for linear residual. | |
int | max_iterations |
Maximum number of linear iteration. | |
int | restart_number |
Number of iterations before restarting GMRES. | |
double | newton_residual |
Tolerance for Newton iteration residual (for Jacobian-free Newton-Krylov) | |
int | newton_max_iterations |
Maximum number of Newton iterations (for Jacobian-free Newton-Krylov) | |
double | perturbation_magnitude |
Small perturbation magnitude for Jacobian-free methods. | |
Parameters related to the linear solver.
Definition at line 13 of file parameters_linear_solver.h.
Types of linear solvers available.
Enumerator | |
---|---|
gmres | LU. GMRES. |
Definition at line 17 of file parameters_linear_solver.h.
OutputEnum PHiLiP::Parameters::LinearSolverParam::linear_solver_output |
Can either be verbose or quiet.
Verbose will print the full dense matrix. Will not work for large matricesquiet or verbose.
Definition at line 25 of file parameters_linear_solver.h.