[P]arallel [Hi]gh-order [Li]brary for [P]DEs  Latest
Parallel High-Order Library for PDEs through hp-adaptive Discontinuous Galerkin methods
PHiLiP::Physics::BurgersRewienski< dim, nstate, real > Class Template Reference

Burgers Rewienski equation. Derived from Burgers, which is derived from PhysicsBase. Based on eq.(18) in Carlberg 2011. More...

#include <burgers_rewienski.h>

Inheritance diagram for PHiLiP::Physics::BurgersRewienski< dim, nstate, real >:
Collaboration diagram for PHiLiP::Physics::BurgersRewienski< dim, nstate, real >:

Public Member Functions

 BurgersRewienski (const Parameters::AllParameters *const parameters_input, const double rewienski_a, const double rewienski_b, const bool rewienski_manufactured_solution, const bool convection, const bool diffusion, const dealii::Tensor< 2, 3, double > input_diffusion_tensor=Parameters::ManufacturedSolutionParam::get_default_diffusion_tensor(), std::shared_ptr< ManufacturedSolutionFunction< dim, real > > manufactured_solution_function=nullptr)
 Constructor.
 
std::array< real, nstate > source_term (const dealii::Point< dim, real > &pos, const std::array< real, nstate > &solution, const real current_time) const override
 PDE Source term. If rewienski_manufactured_solution==true then the manufactured solution source term is also included.
 
void boundary_face_values (const int, const dealii::Point< dim, real > &, const dealii::Tensor< 1, dim, real > &, const std::array< real, nstate > &, const std::array< dealii::Tensor< 1, dim, real >, nstate > &, std::array< real, nstate > &, std::array< dealii::Tensor< 1, dim, real >, nstate > &) const override
 If diffusion is present, assign Dirichlet boundary condition.
 
- Public Member Functions inherited from PHiLiP::Physics::Burgers< dim, nstate, real >
 Burgers (const Parameters::AllParameters *const parameters_input, const double diffusion_coefficient, const bool convection=true, const bool diffusion=true, const dealii::Tensor< 2, 3, double > input_diffusion_tensor=Parameters::ManufacturedSolutionParam::get_default_diffusion_tensor(), std::shared_ptr< ManufacturedSolutionFunction< dim, real > > manufactured_solution_function=nullptr, const Parameters::AllParameters::TestType parameters_test=Parameters::AllParameters::TestType::run_control, const bool has_nonzero_physical_source=false)
 Constructor.
 
std::array< dealii::Tensor< 1, dim, real >, nstate > convective_flux (const std::array< real, nstate > &solution) const
 Convective flux: \( \mathbf{F}_{conv} = u \).
 
std::array< dealii::Tensor< 1, dim, real >, nstate > convective_numerical_split_flux (const std::array< real, nstate > &conservative_soln1, const std::array< real, nstate > &conservative_soln2) const override
 Convective split flux.
 
std::array< real, nstate > compute_entropy_variables (const std::array< real, nstate > &conservative_soln) const
 Computes the entropy variables.
 
std::array< real, nstate > compute_conservative_variables_from_entropy_variables (const std::array< real, nstate > &entropy_var) const
 Computes the conservative variables from the entropy variables.
 
std::array< real, nstate > convective_eigenvalues (const std::array< real, nstate > &, const dealii::Tensor< 1, dim, real > &) const
 Spectral radius of convective term Jacobian is 'c'.
 
real max_convective_eigenvalue (const std::array< real, nstate > &soln) const
 Maximum convective eigenvalue.
 
real max_viscous_eigenvalue (const std::array< real, nstate > &soln) const
 Maximum viscous eigenvalue.
 
std::array< dealii::Tensor< 1, dim, real >, nstate > dissipative_flux (const std::array< real, nstate > &solution, const std::array< dealii::Tensor< 1, dim, real >, nstate > &solution_gradient, const dealii::types::global_dof_index cell_index) const
 Dissipative flux: u.
 
std::array< dealii::Tensor< 1, dim, real >, nstate > dissipative_flux (const std::array< real, nstate > &solution, const std::array< dealii::Tensor< 1, dim, real >, nstate > &solution_gradient) const
 Dissipative flux: u.
 
std::array< real, nstate > source_term (const dealii::Point< dim, real > &pos, const std::array< real, nstate > &solution, const real current_time, const dealii::types::global_dof_index cell_index) const
 Source term is zero or depends on manufactured solution.
 
- Public Member Functions inherited from PHiLiP::Physics::PhysicsBase< dim, nstate, real >
 PhysicsBase (const Parameters::AllParameters *const parameters_input, const bool has_nonzero_diffusion_input, const bool has_nonzero_physical_source_input, const dealii::Tensor< 2, 3, double > input_diffusion_tensor=Parameters::ManufacturedSolutionParam::get_default_diffusion_tensor(), std::shared_ptr< ManufacturedSolutionFunction< dim, real > > manufactured_solution_function_input=nullptr)
 Default constructor that will set the constants.
 
 PhysicsBase (const Parameters::AllParameters *const parameters_input, const bool has_nonzero_diffusion_input, const bool has_nonzero_physical_source_input, std::shared_ptr< ManufacturedSolutionFunction< dim, real > > manufactured_solution_function_input=nullptr)
 Constructor that will call default constructor.
 
virtual ~PhysicsBase ()=default
 Virtual destructor required for abstract classes.
 
virtual real max_convective_normal_eigenvalue (const std::array< real, nstate > &soln, const dealii::Tensor< 1, dim, real > &normal) const
 Maximum convective normal eigenvalue (used in Lax-Friedrichs)
 
virtual std::array< real, nstate > physical_source_term (const dealii::Point< dim, real > &pos, const std::array< real, nstate > &solution, const std::array< dealii::Tensor< 1, dim, real >, nstate > &solution_gradient, const dealii::types::global_dof_index cell_index) const
 Physical source term that does require differentiation.
 
virtual std::array< real, nstate > artificial_source_term (const real viscosity_coefficient, const dealii::Point< dim, real > &pos, const std::array< real, nstate > &solution) const
 Artificial source term that does not require differentiation stemming from artificial dissipation.
 
virtual dealii::Vector< double > post_compute_derived_quantities_vector (const dealii::Vector< double > &uh, const std::vector< dealii::Tensor< 1, dim > > &, const std::vector< dealii::Tensor< 2, dim > > &, const dealii::Tensor< 1, dim > &, const dealii::Point< dim > &) const
 Returns current vector solution to be used by PhysicsPostprocessor to output current solution. More...
 
virtual dealii::Vector< double > post_compute_derived_quantities_scalar (const double &uh, const dealii::Tensor< 1, dim > &, const dealii::Tensor< 2, dim > &, const dealii::Tensor< 1, dim > &, const dealii::Point< dim > &) const
 Returns current scalar solution to be used by PhysicsPostprocessor to output current solution. More...
 
virtual std::vector< std::string > post_get_names () const
 Returns names of the solution to be used by PhysicsPostprocessor to output current solution. More...
 
virtual std::vector< dealii::DataComponentInterpretation::DataComponentInterpretation > post_get_data_component_interpretation () const
 Returns DataComponentInterpretation of the solution to be used by PhysicsPostprocessor to output current solution. More...
 
virtual dealii::UpdateFlags post_get_needed_update_flags () const
 Returns required update flags of the solution to be used by PhysicsPostprocessor to output current solution. More...
 
template<typename real2 >
real2 handle_non_physical_result (const std::string message="") const
 Function to handle nonphysical results. More...
 

Public Attributes

const double rewienski_a
 Parameter a for eq.(18) in Carlberg 2011.
 
const double rewienski_b
 Parameter b for eq.(18) in Carlberg 2011.
 
const bool rewienski_manufactured_solution
 
- Public Attributes inherited from PHiLiP::Physics::Burgers< dim, nstate, real >
const bool hasConvection
 Turns on convective part of the Burgers problem. More...
 
const bool hasDiffusion
 Turns on diffusive part of the Burgers problem.
 
const Parameters::AllParameters::TestType test_type
 Allows Burgers to distinguish between different unsteady test types. More...
 
- Public Attributes inherited from PHiLiP::Physics::PhysicsBase< dim, nstate, real >
const bool has_nonzero_diffusion
 Flag to signal that diffusion term is non-zero.
 
const bool has_nonzero_physical_source
 Flag to signal that physical source term is non-zero.
 
const Parameters::AllParameters *const all_parameters
 Pointer to parameters object.
 
const NonPhysicalBehaviorEnum non_physical_behavior_type
 Determines type of nonphysical behavior.
 
std::shared_ptr< ManufacturedSolutionFunction< dim, real > > manufactured_solution_function
 Manufactured solution function.
 
const double BIG_NUMBER = 1e100
 BIG_NUMBER which is returned in place of NaN according to handle_non_physical_result() More...
 

Additional Inherited Members

- Public Types inherited from PHiLiP::Physics::PhysicsBase< dim, nstate, real >
using NonPhysicalBehaviorEnum = Parameters::AllParameters::NonPhysicalBehaviorEnum
 
- Protected Member Functions inherited from PHiLiP::Physics::Burgers< dim, nstate, real >
real diffusion_coefficient () const
 Diffusion coefficient.
 
- Protected Attributes inherited from PHiLiP::Physics::Burgers< dim, nstate, real >
double diffusion_scaling_coeff
 Diffusion scaling coefficient in front of the diffusion tensor.
 
- Protected Attributes inherited from PHiLiP::Physics::PhysicsBase< dim, nstate, real >
dealii::ConditionalOStream pcout
 ConditionalOStream. More...
 
dealii::Tensor< 2, dim, double > diffusion_tensor
 Anisotropic diffusion matrix. More...
 

Detailed Description

template<int dim, int nstate, typename real>
class PHiLiP::Physics::BurgersRewienski< dim, nstate, real >

Burgers Rewienski equation. Derived from Burgers, which is derived from PhysicsBase. Based on eq.(18) in Carlberg 2011.

Definition at line 10 of file burgers_rewienski.h.

Member Data Documentation

◆ rewienski_manufactured_solution

template<int dim, int nstate, typename real >
const bool PHiLiP::Physics::BurgersRewienski< dim, nstate, real >::rewienski_manufactured_solution

Run manufactured solution for this case if set to "true"

  • Additional parameter since parameter "use_manufactured_solution_source" is already set to "true" for the PDE's source term

Definition at line 43 of file burgers_rewienski.h.


The documentation for this class was generated from the following files: