1 #include "min_max_scaler.h" 4 namespace ProperOrthogonalDecomposition {
7 min.resize(parameters.cols());
8 max.resize(parameters.cols());
9 MatrixXd parameters_scaled(parameters.rows(), parameters.cols());
10 for(
int j = 0 ; j < parameters.cols() ; j++){
11 min(j) = parameters.col(j).minCoeff();
12 max(j) = parameters.col(j).maxCoeff();
14 std::cout <<
"Min and max are equal, causing the MinMaxScaler to divide by zero. Please ensure that min != max." << std::endl;
17 for(
int k = 0 ; k < parameters.rows() ; k++){
18 parameters_scaled(k, j) = (parameters(k, j) -
min(j)) / (
max(j) -
min(j));
21 return parameters_scaled;
25 MatrixXd parameters_scaled(parameters.rows(), parameters.cols());
26 for(
int j = 0 ; j < parameters.cols() ; j++){
27 for(
int k = 0 ; k < parameters.rows() ; k++){
28 parameters_scaled(k, j) = (parameters(k, j) -
min(j)) / (
max(j) -
min(j));
31 return parameters_scaled;
35 MatrixXd parameters(parameters_scaled.rows(), parameters_scaled.cols());
36 for(
int j = 0 ; j < parameters_scaled.cols() ; j++){
37 for(
int k = 0 ; k < parameters_scaled.rows() ; k++){
38 parameters(k, j) = (parameters_scaled(k,j)*(
max(j) -
min(j))) +
min(j);
Files for the baseline physics.
MatrixXd fit_transform(const MatrixXd &snapshot_parameters)
Fit and transform data.
RowVectorXd max
Maximum values.
MatrixXd inverse_transform(const MatrixXd &snapshot_parameters)
Unscale data.
MatrixXd transform(const MatrixXd &snapshot_parameters)
Transform data to previously fitted dataset.
RowVectorXd min
Minimum values.