1 #include "min_max_scaler.h"     4 namespace ProperOrthogonalDecomposition {
     7     min.resize(parameters.cols());
     8     max.resize(parameters.cols());
     9     MatrixXd parameters_scaled(parameters.rows(), parameters.cols());
    10     for(
int j = 0 ; j < parameters.cols() ; j++){
    11         min(j) = parameters.col(j).minCoeff();
    12         max(j) = parameters.col(j).maxCoeff();
    14             std::cout << 
"Min and max are equal, causing the MinMaxScaler to divide by zero. Please ensure that min != max." << std::endl;
    17         for(
int k = 0 ; k < parameters.rows() ; k++){
    18             parameters_scaled(k, j) = (parameters(k, j) - 
min(j)) / (
max(j) - 
min(j));
    21     return parameters_scaled;
    25     MatrixXd parameters_scaled(parameters.rows(), parameters.cols());
    26     for(
int j = 0 ; j < parameters.cols() ; j++){
    27         for(
int k = 0 ; k < parameters.rows() ; k++){
    28             parameters_scaled(k, j) = (parameters(k, j) - 
min(j)) / (
max(j) - 
min(j));
    31     return parameters_scaled;
    35     MatrixXd parameters(parameters_scaled.rows(), parameters_scaled.cols());
    36     for(
int j = 0 ; j < parameters_scaled.cols() ; j++){
    37         for(
int k = 0 ; k < parameters_scaled.rows() ; k++){
    38             parameters(k, j) =  (parameters_scaled(k,j)*(
max(j) - 
min(j))) + 
min(j);
 Files for the baseline physics. 
MatrixXd fit_transform(const MatrixXd &snapshot_parameters)
Fit and transform data. 
RowVectorXd max
Maximum values. 
MatrixXd inverse_transform(const MatrixXd &snapshot_parameters)
Unscale data. 
MatrixXd transform(const MatrixXd &snapshot_parameters)
Transform data to previously fitted dataset. 
RowVectorXd min
Minimum values.