OSVR-Core
GeneralProduct.h
1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
5 // Copyright (C) 2008-2011 Gael Guennebaud <gael.guennebaud@inria.fr>
6 //
7 // This Source Code Form is subject to the terms of the Mozilla
8 // Public License v. 2.0. If a copy of the MPL was not distributed
9 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
10 
11 #ifndef EIGEN_GENERAL_PRODUCT_H
12 #define EIGEN_GENERAL_PRODUCT_H
13 
14 namespace Eigen {
15 
35 template<typename Lhs, typename Rhs, int ProductType = internal::product_type<Lhs,Rhs>::value>
37 
38 enum {
39  Large = 2,
40  Small = 3
41 };
42 
43 namespace internal {
44 
45 template<int Rows, int Cols, int Depth> struct product_type_selector;
46 
47 template<int Size, int MaxSize> struct product_size_category
48 {
49  enum { is_large = MaxSize == Dynamic ||
50  Size >= EIGEN_CACHEFRIENDLY_PRODUCT_THRESHOLD,
51  value = is_large ? Large
52  : Size == 1 ? 1
53  : Small
54  };
55 };
56 
57 template<typename Lhs, typename Rhs> struct product_type
58 {
59  typedef typename remove_all<Lhs>::type _Lhs;
60  typedef typename remove_all<Rhs>::type _Rhs;
61  enum {
62  MaxRows = _Lhs::MaxRowsAtCompileTime,
63  Rows = _Lhs::RowsAtCompileTime,
64  MaxCols = _Rhs::MaxColsAtCompileTime,
65  Cols = _Rhs::ColsAtCompileTime,
66  MaxDepth = EIGEN_SIZE_MIN_PREFER_FIXED(_Lhs::MaxColsAtCompileTime,
67  _Rhs::MaxRowsAtCompileTime),
68  Depth = EIGEN_SIZE_MIN_PREFER_FIXED(_Lhs::ColsAtCompileTime,
69  _Rhs::RowsAtCompileTime),
70  LargeThreshold = EIGEN_CACHEFRIENDLY_PRODUCT_THRESHOLD
71  };
72 
73  // the splitting into different lines of code here, introducing the _select enums and the typedef below,
74  // is to work around an internal compiler error with gcc 4.1 and 4.2.
75 private:
76  enum {
80  };
82 
83 public:
84  enum {
85  value = selector::ret
86  };
87 #ifdef EIGEN_DEBUG_PRODUCT
88  static void debug()
89  {
90  EIGEN_DEBUG_VAR(Rows);
91  EIGEN_DEBUG_VAR(Cols);
92  EIGEN_DEBUG_VAR(Depth);
93  EIGEN_DEBUG_VAR(rows_select);
94  EIGEN_DEBUG_VAR(cols_select);
95  EIGEN_DEBUG_VAR(depth_select);
96  EIGEN_DEBUG_VAR(value);
97  }
98 #endif
99 };
100 
101 
102 /* The following allows to select the kind of product at compile time
103  * based on the three dimensions of the product.
104  * This is a compile time mapping from {1,Small,Large}^3 -> {product types} */
105 // FIXME I'm not sure the current mapping is the ideal one.
106 template<int M, int N> struct product_type_selector<M,N,1> { enum { ret = OuterProduct }; };
107 template<int Depth> struct product_type_selector<1, 1, Depth> { enum { ret = InnerProduct }; };
108 template<> struct product_type_selector<1, 1, 1> { enum { ret = InnerProduct }; };
109 template<> struct product_type_selector<Small,1, Small> { enum { ret = CoeffBasedProductMode }; };
110 template<> struct product_type_selector<1, Small,Small> { enum { ret = CoeffBasedProductMode }; };
111 template<> struct product_type_selector<Small,Small,Small> { enum { ret = CoeffBasedProductMode }; };
112 template<> struct product_type_selector<Small, Small, 1> { enum { ret = LazyCoeffBasedProductMode }; };
113 template<> struct product_type_selector<Small, Large, 1> { enum { ret = LazyCoeffBasedProductMode }; };
114 template<> struct product_type_selector<Large, Small, 1> { enum { ret = LazyCoeffBasedProductMode }; };
115 template<> struct product_type_selector<1, Large,Small> { enum { ret = CoeffBasedProductMode }; };
116 template<> struct product_type_selector<1, Large,Large> { enum { ret = GemvProduct }; };
117 template<> struct product_type_selector<1, Small,Large> { enum { ret = CoeffBasedProductMode }; };
118 template<> struct product_type_selector<Large,1, Small> { enum { ret = CoeffBasedProductMode }; };
119 template<> struct product_type_selector<Large,1, Large> { enum { ret = GemvProduct }; };
120 template<> struct product_type_selector<Small,1, Large> { enum { ret = CoeffBasedProductMode }; };
121 template<> struct product_type_selector<Small,Small,Large> { enum { ret = GemmProduct }; };
122 template<> struct product_type_selector<Large,Small,Large> { enum { ret = GemmProduct }; };
123 template<> struct product_type_selector<Small,Large,Large> { enum { ret = GemmProduct }; };
124 template<> struct product_type_selector<Large,Large,Large> { enum { ret = GemmProduct }; };
125 template<> struct product_type_selector<Large,Small,Small> { enum { ret = GemmProduct }; };
126 template<> struct product_type_selector<Small,Large,Small> { enum { ret = GemmProduct }; };
127 template<> struct product_type_selector<Large,Large,Small> { enum { ret = GemmProduct }; };
128 
129 } // end namespace internal
130 
148 template<typename Lhs, typename Rhs, int ProductType>
150 {
151  // TODO use the nested type to reduce instanciations ????
152 // typedef typename internal::nested<Lhs,Rhs::ColsAtCompileTime>::type LhsNested;
153 // typedef typename internal::nested<Rhs,Lhs::RowsAtCompileTime>::type RhsNested;
154 
155  typedef GeneralProduct<Lhs/*Nested*/, Rhs/*Nested*/, ProductType> Type;
156 };
157 
158 template<typename Lhs, typename Rhs>
159 struct ProductReturnType<Lhs,Rhs,CoeffBasedProductMode>
160 {
164 };
165 
166 template<typename Lhs, typename Rhs>
167 struct ProductReturnType<Lhs,Rhs,LazyCoeffBasedProductMode>
168 {
172 };
173 
174 // this is a workaround for sun CC
175 template<typename Lhs, typename Rhs>
176 struct LazyProductReturnType : public ProductReturnType<Lhs,Rhs,LazyCoeffBasedProductMode>
177 {};
178 
179 /***********************************************************************
180 * Implementation of Inner Vector Vector Product
181 ***********************************************************************/
182 
183 // FIXME : maybe the "inner product" could return a Scalar
184 // instead of a 1x1 matrix ??
185 // Pro: more natural for the user
186 // Cons: this could be a problem if in a meta unrolled algorithm a matrix-matrix
187 // product ends up to a row-vector times col-vector product... To tackle this use
188 // case, we could have a specialization for Block<MatrixType,1,1> with: operator=(Scalar x);
189 
190 namespace internal {
191 
192 template<typename Lhs, typename Rhs>
193 struct traits<GeneralProduct<Lhs,Rhs,InnerProduct> >
194  : traits<Matrix<typename scalar_product_traits<typename Lhs::Scalar, typename Rhs::Scalar>::ReturnType,1,1> >
195 {};
196 
197 }
198 
199 template<typename Lhs, typename Rhs>
200 class GeneralProduct<Lhs, Rhs, InnerProduct>
202  public Matrix<typename internal::scalar_product_traits<typename Lhs::Scalar, typename Rhs::Scalar>::ReturnType,1,1>
203 {
205  public:
206  GeneralProduct(const Lhs& lhs, const Rhs& rhs)
207  {
209  YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY)
210 
211  Base::coeffRef(0,0) = (lhs.transpose().cwiseProduct(rhs)).sum();
212  }
213 
215  operator const typename Base::Scalar() const {
216  return Base::coeff(0,0);
217  }
218 };
219 
220 /***********************************************************************
221 * Implementation of Outer Vector Vector Product
222 ***********************************************************************/
223 
224 namespace internal {
225 
226 // Column major
227 template<typename ProductType, typename Dest, typename Func>
228 EIGEN_DONT_INLINE void outer_product_selector_run(const ProductType& prod, Dest& dest, const Func& func, const false_type&)
229 {
230  typedef typename Dest::Index Index;
231  // FIXME make sure lhs is sequentially stored
232  // FIXME not very good if rhs is real and lhs complex while alpha is real too
233  const Index cols = dest.cols();
234  for (Index j=0; j<cols; ++j)
235  func(dest.col(j), prod.rhs().coeff(0,j) * prod.lhs());
236 }
237 
238 // Row major
239 template<typename ProductType, typename Dest, typename Func>
240 EIGEN_DONT_INLINE void outer_product_selector_run(const ProductType& prod, Dest& dest, const Func& func, const true_type&) {
241  typedef typename Dest::Index Index;
242  // FIXME make sure rhs is sequentially stored
243  // FIXME not very good if lhs is real and rhs complex while alpha is real too
244  const Index rows = dest.rows();
245  for (Index i=0; i<rows; ++i)
246  func(dest.row(i), prod.lhs().coeff(i,0) * prod.rhs());
247 }
248 
249 template<typename Lhs, typename Rhs>
250 struct traits<GeneralProduct<Lhs,Rhs,OuterProduct> >
251  : traits<ProductBase<GeneralProduct<Lhs,Rhs,OuterProduct>, Lhs, Rhs> >
252 {};
253 
254 }
255 
256 template<typename Lhs, typename Rhs>
257 class GeneralProduct<Lhs, Rhs, OuterProduct>
258  : public ProductBase<GeneralProduct<Lhs,Rhs,OuterProduct>, Lhs, Rhs>
259 {
260  template<typename T> struct is_row_major : internal::conditional<(int(T::Flags)&RowMajorBit), internal::true_type, internal::false_type>::type {};
261 
262  public:
263  EIGEN_PRODUCT_PUBLIC_INTERFACE(GeneralProduct)
264 
265  GeneralProduct(const Lhs& lhs, const Rhs& rhs) : Base(lhs,rhs)
266  {
268  YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY)
269  }
270 
271  struct set { template<typename Dst, typename Src> void operator()(const Dst& dst, const Src& src) const { dst.const_cast_derived() = src; } };
272  struct add { template<typename Dst, typename Src> void operator()(const Dst& dst, const Src& src) const { dst.const_cast_derived() += src; } };
273  struct sub { template<typename Dst, typename Src> void operator()(const Dst& dst, const Src& src) const { dst.const_cast_derived() -= src; } };
274  struct adds {
275  Scalar m_scale;
276  adds(const Scalar& s) : m_scale(s) {}
277  template<typename Dst, typename Src> void operator()(const Dst& dst, const Src& src) const {
278  dst.const_cast_derived() += m_scale * src;
279  }
280  };
281 
282  template<typename Dest>
283  inline void evalTo(Dest& dest) const {
284  internal::outer_product_selector_run(*this, dest, set(), is_row_major<Dest>());
285  }
286 
287  template<typename Dest>
288  inline void addTo(Dest& dest) const {
289  internal::outer_product_selector_run(*this, dest, add(), is_row_major<Dest>());
290  }
291 
292  template<typename Dest>
293  inline void subTo(Dest& dest) const {
294  internal::outer_product_selector_run(*this, dest, sub(), is_row_major<Dest>());
295  }
296 
297  template<typename Dest> void scaleAndAddTo(Dest& dest, const Scalar& alpha) const
298  {
299  internal::outer_product_selector_run(*this, dest, adds(alpha), is_row_major<Dest>());
300  }
301 };
302 
303 /***********************************************************************
304 * Implementation of General Matrix Vector Product
305 ***********************************************************************/
306 
307 /* According to the shape/flags of the matrix we have to distinghish 3 different cases:
308  * 1 - the matrix is col-major, BLAS compatible and M is large => call fast BLAS-like colmajor routine
309  * 2 - the matrix is row-major, BLAS compatible and N is large => call fast BLAS-like rowmajor routine
310  * 3 - all other cases are handled using a simple loop along the outer-storage direction.
311  * Therefore we need a lower level meta selector.
312  * Furthermore, if the matrix is the rhs, then the product has to be transposed.
313  */
314 namespace internal {
315 
316 template<typename Lhs, typename Rhs>
317 struct traits<GeneralProduct<Lhs,Rhs,GemvProduct> >
318  : traits<ProductBase<GeneralProduct<Lhs,Rhs,GemvProduct>, Lhs, Rhs> >
319 {};
320 
321 template<int Side, int StorageOrder, bool BlasCompatible>
323 
324 } // end namespace internal
325 
326 template<typename Lhs, typename Rhs>
327 class GeneralProduct<Lhs, Rhs, GemvProduct>
328  : public ProductBase<GeneralProduct<Lhs,Rhs,GemvProduct>, Lhs, Rhs>
329 {
330  public:
331  EIGEN_PRODUCT_PUBLIC_INTERFACE(GeneralProduct)
332 
333  typedef typename Lhs::Scalar LhsScalar;
334  typedef typename Rhs::Scalar RhsScalar;
335 
336  GeneralProduct(const Lhs& a_lhs, const Rhs& a_rhs) : Base(a_lhs,a_rhs)
337  {
338 // EIGEN_STATIC_ASSERT((internal::is_same<typename Lhs::Scalar, typename Rhs::Scalar>::value),
339 // YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY)
340  }
341 
342  enum { Side = Lhs::IsVectorAtCompileTime ? OnTheLeft : OnTheRight };
344 
345  template<typename Dest> void scaleAndAddTo(Dest& dst, const Scalar& alpha) const
346  {
347  eigen_assert(m_lhs.rows() == dst.rows() && m_rhs.cols() == dst.cols());
348  internal::gemv_selector<Side,(int(MatrixType::Flags)&RowMajorBit) ? RowMajor : ColMajor,
349  bool(internal::blas_traits<MatrixType>::HasUsableDirectAccess)>::run(*this, dst, alpha);
350  }
351 };
352 
353 namespace internal {
354 
355 // The vector is on the left => transposition
356 template<int StorageOrder, bool BlasCompatible>
357 struct gemv_selector<OnTheLeft,StorageOrder,BlasCompatible>
358 {
359  template<typename ProductType, typename Dest>
360  static void run(const ProductType& prod, Dest& dest, const typename ProductType::Scalar& alpha)
361  {
362  Transpose<Dest> destT(dest);
363  enum { OtherStorageOrder = StorageOrder == RowMajor ? ColMajor : RowMajor };
366  (prod.rhs().transpose(), prod.lhs().transpose()), destT, alpha);
367  }
368 };
369 
370 template<typename Scalar,int Size,int MaxSize,bool Cond> struct gemv_static_vector_if;
371 
372 template<typename Scalar,int Size,int MaxSize>
373 struct gemv_static_vector_if<Scalar,Size,MaxSize,false>
374 {
375  EIGEN_STRONG_INLINE Scalar* data() { eigen_internal_assert(false && "should never be called"); return 0; }
376 };
377 
378 template<typename Scalar,int Size>
379 struct gemv_static_vector_if<Scalar,Size,Dynamic,true>
380 {
381  EIGEN_STRONG_INLINE Scalar* data() { return 0; }
382 };
383 
384 template<typename Scalar,int Size,int MaxSize>
385 struct gemv_static_vector_if<Scalar,Size,MaxSize,true>
386 {
387  #if EIGEN_ALIGN_STATICALLY
389  EIGEN_STRONG_INLINE Scalar* data() { return m_data.array; }
390  #else
391  // Some architectures cannot align on the stack,
392  // => let's manually enforce alignment by allocating more data and return the address of the first aligned element.
393  enum {
396  };
398  EIGEN_STRONG_INLINE Scalar* data() {
399  return ForceAlignment
400  ? reinterpret_cast<Scalar*>((reinterpret_cast<size_t>(m_data.array) & ~(size_t(15))) + 16)
401  : m_data.array;
402  }
403  #endif
404 };
405 
406 template<> struct gemv_selector<OnTheRight,ColMajor,true>
407 {
408  template<typename ProductType, typename Dest>
409  static inline void run(const ProductType& prod, Dest& dest, const typename ProductType::Scalar& alpha)
410  {
411  typedef typename ProductType::Index Index;
412  typedef typename ProductType::LhsScalar LhsScalar;
413  typedef typename ProductType::RhsScalar RhsScalar;
414  typedef typename ProductType::Scalar ResScalar;
415  typedef typename ProductType::RealScalar RealScalar;
416  typedef typename ProductType::ActualLhsType ActualLhsType;
417  typedef typename ProductType::ActualRhsType ActualRhsType;
418  typedef typename ProductType::LhsBlasTraits LhsBlasTraits;
419  typedef typename ProductType::RhsBlasTraits RhsBlasTraits;
420  typedef Map<Matrix<ResScalar,Dynamic,1>, Aligned> MappedDest;
421 
422  ActualLhsType actualLhs = LhsBlasTraits::extract(prod.lhs());
423  ActualRhsType actualRhs = RhsBlasTraits::extract(prod.rhs());
424 
425  ResScalar actualAlpha = alpha * LhsBlasTraits::extractScalarFactor(prod.lhs())
426  * RhsBlasTraits::extractScalarFactor(prod.rhs());
427 
428  // make sure Dest is a compile-time vector type (bug 1166)
430 
431  enum {
432  // FIXME find a way to allow an inner stride on the result if packet_traits<Scalar>::size==1
433  // on, the other hand it is good for the cache to pack the vector anyways...
434  EvalToDestAtCompileTime = (ActualDest::InnerStrideAtCompileTime==1),
436  MightCannotUseDest = (ActualDest::InnerStrideAtCompileTime!=1) || ComplexByReal
437  };
438 
440 
441  bool alphaIsCompatible = (!ComplexByReal) || (numext::imag(actualAlpha)==RealScalar(0));
442  bool evalToDest = EvalToDestAtCompileTime && alphaIsCompatible;
443 
444  RhsScalar compatibleAlpha = get_factor<ResScalar,RhsScalar>::run(actualAlpha);
445 
446  ei_declare_aligned_stack_constructed_variable(ResScalar,actualDestPtr,dest.size(),
447  evalToDest ? dest.data() : static_dest.data());
448 
449  if(!evalToDest)
450  {
451  #ifdef EIGEN_DENSE_STORAGE_CTOR_PLUGIN
452  int size = dest.size();
453  EIGEN_DENSE_STORAGE_CTOR_PLUGIN
454  #endif
455  if(!alphaIsCompatible)
456  {
457  MappedDest(actualDestPtr, dest.size()).setZero();
458  compatibleAlpha = RhsScalar(1);
459  }
460  else
461  MappedDest(actualDestPtr, dest.size()) = dest;
462  }
463 
465  <Index,LhsScalar,ColMajor,LhsBlasTraits::NeedToConjugate,RhsScalar,RhsBlasTraits::NeedToConjugate>::run(
466  actualLhs.rows(), actualLhs.cols(),
467  actualLhs.data(), actualLhs.outerStride(),
468  actualRhs.data(), actualRhs.innerStride(),
469  actualDestPtr, 1,
470  compatibleAlpha);
471 
472  if (!evalToDest)
473  {
474  if(!alphaIsCompatible)
475  dest += actualAlpha * MappedDest(actualDestPtr, dest.size());
476  else
477  dest = MappedDest(actualDestPtr, dest.size());
478  }
479  }
480 };
481 
482 template<> struct gemv_selector<OnTheRight,RowMajor,true>
483 {
484  template<typename ProductType, typename Dest>
485  static void run(const ProductType& prod, Dest& dest, const typename ProductType::Scalar& alpha)
486  {
487  typedef typename ProductType::LhsScalar LhsScalar;
488  typedef typename ProductType::RhsScalar RhsScalar;
489  typedef typename ProductType::Scalar ResScalar;
490  typedef typename ProductType::Index Index;
491  typedef typename ProductType::ActualLhsType ActualLhsType;
492  typedef typename ProductType::ActualRhsType ActualRhsType;
493  typedef typename ProductType::_ActualRhsType _ActualRhsType;
494  typedef typename ProductType::LhsBlasTraits LhsBlasTraits;
495  typedef typename ProductType::RhsBlasTraits RhsBlasTraits;
496 
497  typename add_const<ActualLhsType>::type actualLhs = LhsBlasTraits::extract(prod.lhs());
498  typename add_const<ActualRhsType>::type actualRhs = RhsBlasTraits::extract(prod.rhs());
499 
500  ResScalar actualAlpha = alpha * LhsBlasTraits::extractScalarFactor(prod.lhs())
501  * RhsBlasTraits::extractScalarFactor(prod.rhs());
502 
503  enum {
504  // FIXME find a way to allow an inner stride on the result if packet_traits<Scalar>::size==1
505  // on, the other hand it is good for the cache to pack the vector anyways...
506  DirectlyUseRhs = _ActualRhsType::InnerStrideAtCompileTime==1
507  };
508 
510 
511  ei_declare_aligned_stack_constructed_variable(RhsScalar,actualRhsPtr,actualRhs.size(),
512  DirectlyUseRhs ? const_cast<RhsScalar*>(actualRhs.data()) : static_rhs.data());
513 
514  if(!DirectlyUseRhs)
515  {
516  #ifdef EIGEN_DENSE_STORAGE_CTOR_PLUGIN
517  int size = actualRhs.size();
518  EIGEN_DENSE_STORAGE_CTOR_PLUGIN
519  #endif
520  Map<typename _ActualRhsType::PlainObject>(actualRhsPtr, actualRhs.size()) = actualRhs;
521  }
522 
524  <Index,LhsScalar,RowMajor,LhsBlasTraits::NeedToConjugate,RhsScalar,RhsBlasTraits::NeedToConjugate>::run(
525  actualLhs.rows(), actualLhs.cols(),
526  actualLhs.data(), actualLhs.outerStride(),
527  actualRhsPtr, 1,
528  dest.data(), dest.col(0).innerStride(), //NOTE if dest is not a vector at compile-time, then dest.innerStride() might be wrong. (bug 1166)
529  actualAlpha);
530  }
531 };
532 
533 template<> struct gemv_selector<OnTheRight,ColMajor,false>
534 {
535  template<typename ProductType, typename Dest>
536  static void run(const ProductType& prod, Dest& dest, const typename ProductType::Scalar& alpha)
537  {
538  typedef typename Dest::Index Index;
539  // TODO makes sure dest is sequentially stored in memory, otherwise use a temp
540  const Index size = prod.rhs().rows();
541  for(Index k=0; k<size; ++k)
542  dest += (alpha*prod.rhs().coeff(k)) * prod.lhs().col(k);
543  }
544 };
545 
546 template<> struct gemv_selector<OnTheRight,RowMajor,false>
547 {
548  template<typename ProductType, typename Dest>
549  static void run(const ProductType& prod, Dest& dest, const typename ProductType::Scalar& alpha)
550  {
551  typedef typename Dest::Index Index;
552  // TODO makes sure rhs is sequentially stored in memory, otherwise use a temp
553  const Index rows = prod.rows();
554  for(Index i=0; i<rows; ++i)
555  dest.coeffRef(i) += alpha * (prod.lhs().row(i).cwiseProduct(prod.rhs().transpose())).sum();
556  }
557 };
558 
559 } // end namespace internal
560 
561 /***************************************************************************
562 * Implementation of matrix base methods
563 ***************************************************************************/
564 
571 template<typename Derived>
572 template<typename OtherDerived>
575 {
576  // A note regarding the function declaration: In MSVC, this function will sometimes
577  // not be inlined since DenseStorage is an unwindable object for dynamic
578  // matrices and product types are holding a member to store the result.
579  // Thus it does not help tagging this function with EIGEN_STRONG_INLINE.
580  enum {
581  ProductIsValid = Derived::ColsAtCompileTime==Dynamic
582  || OtherDerived::RowsAtCompileTime==Dynamic
583  || int(Derived::ColsAtCompileTime)==int(OtherDerived::RowsAtCompileTime),
584  AreVectors = Derived::IsVectorAtCompileTime && OtherDerived::IsVectorAtCompileTime,
585  SameSizes = EIGEN_PREDICATE_SAME_MATRIX_SIZE(Derived,OtherDerived)
586  };
587  // note to the lost user:
588  // * for a dot product use: v1.dot(v2)
589  // * for a coeff-wise product use: v1.cwiseProduct(v2)
590  EIGEN_STATIC_ASSERT(ProductIsValid || !(AreVectors && SameSizes),
591  INVALID_VECTOR_VECTOR_PRODUCT__IF_YOU_WANTED_A_DOT_OR_COEFF_WISE_PRODUCT_YOU_MUST_USE_THE_EXPLICIT_FUNCTIONS)
592  EIGEN_STATIC_ASSERT(ProductIsValid || !(SameSizes && !AreVectors),
593  INVALID_MATRIX_PRODUCT__IF_YOU_WANTED_A_COEFF_WISE_PRODUCT_YOU_MUST_USE_THE_EXPLICIT_FUNCTION)
594  EIGEN_STATIC_ASSERT(ProductIsValid || SameSizes, INVALID_MATRIX_PRODUCT)
595 #ifdef EIGEN_DEBUG_PRODUCT
597 #endif
598  return typename ProductReturnType<Derived,OtherDerived>::Type(derived(), other.derived());
599 }
600 
612 template<typename Derived>
613 template<typename OtherDerived>
616 {
617  enum {
618  ProductIsValid = Derived::ColsAtCompileTime==Dynamic
619  || OtherDerived::RowsAtCompileTime==Dynamic
620  || int(Derived::ColsAtCompileTime)==int(OtherDerived::RowsAtCompileTime),
621  AreVectors = Derived::IsVectorAtCompileTime && OtherDerived::IsVectorAtCompileTime,
622  SameSizes = EIGEN_PREDICATE_SAME_MATRIX_SIZE(Derived,OtherDerived)
623  };
624  // note to the lost user:
625  // * for a dot product use: v1.dot(v2)
626  // * for a coeff-wise product use: v1.cwiseProduct(v2)
627  EIGEN_STATIC_ASSERT(ProductIsValid || !(AreVectors && SameSizes),
628  INVALID_VECTOR_VECTOR_PRODUCT__IF_YOU_WANTED_A_DOT_OR_COEFF_WISE_PRODUCT_YOU_MUST_USE_THE_EXPLICIT_FUNCTIONS)
629  EIGEN_STATIC_ASSERT(ProductIsValid || !(SameSizes && !AreVectors),
630  INVALID_MATRIX_PRODUCT__IF_YOU_WANTED_A_COEFF_WISE_PRODUCT_YOU_MUST_USE_THE_EXPLICIT_FUNCTION)
631  EIGEN_STATIC_ASSERT(ProductIsValid || SameSizes, INVALID_MATRIX_PRODUCT)
632 
633  return typename LazyProductReturnType<Derived,OtherDerived>::Type(derived(), other.derived());
634 }
635 
636 } // end namespace Eigen
637 
638 #endif // EIGEN_PRODUCT_H
Definition: GeneralProduct.h:322
const LazyProductReturnType< Derived, OtherDerived >::Type lazyProduct(const MatrixBase< OtherDerived > &other) const
Definition: GeneralProduct.h:615
Expression of the product of two general matrices or vectors.
Definition: GeneralProduct.h:36
Definition: GeneralProduct.h:176
Definition: BlasUtil.h:151
Apply transformation on the right.
Definition: Constants.h:279
Definition: GeneralProduct.h:47
A matrix or vector expression mapping an existing array of data.
Definition: Map.h:104
Definition: Meta.h:34
Definition: ProductBase.h:63
Expression of the transpose of a matrix.
Definition: Transpose.h:57
Definition: BlasUtil.h:111
Definition: GeneralProduct.h:45
iterative scaling algorithm to equilibrate rows and column norms in matrices
Definition: TestIMU_Common.h:87
Holds information about the various numeric (i.e.
Definition: NumTraits.h:88
Definition: Meta.h:29
const unsigned int RowMajorBit
for a matrix, this means that the storage order is row-major.
Definition: Constants.h:53
Object is aligned for vectorization.
Definition: Constants.h:194
Definition: XprHelper.h:32
Definition: GenericPacketMath.h:71
detail::size< coerce_list< Ts... >> size
Get the size of a list (number of elements.)
Definition: Size.h:56
Storage order is column major (see TopicStorageOrders).
Definition: Constants.h:264
Definition: GeneralProduct.h:57
Definition: XprHelper.h:371
Definition: CoeffBasedProduct.h:114
Definition: GeneralProduct.h:370
Definition: benchGeometry.cpp:23
Definition: BandTriangularSolver.h:13
Storage order is row major (see TopicStorageOrders).
Definition: Constants.h:266
Definition: XprHelper.h:316
Helper class to get the correct and optimized returned type of operator*.
Definition: GeneralProduct.h:149
Definition: DenseStorage.h:43
const int Dynamic
This value means that a positive quantity (e.g., a size) is not known at compile-time, and that instead the value is stored in some runtime variable.
Definition: Constants.h:21
Definition: Meta.h:25
Base class for all dense matrices, vectors, and expressions.
Definition: MatrixBase.h:48
Definition: ForwardDeclarations.h:17
Apply transformation on the left.
Definition: Constants.h:277
double Scalar
Common scalar type.
Definition: FlexibleKalmanBase.h:48