OSVR-Core
Classes | Public Types | Public Member Functions | Static Public Member Functions | Protected Member Functions | Friends | List of all members
Eigen::MatrixBase< Derived > Class Template Reference

Base class for all dense matrices, vectors, and expressions. More...

#include <MatrixBase.h>

Inheritance diagram for Eigen::MatrixBase< Derived >:
Eigen::DenseBase< Derived > Eigen::internal::special_scalar_op_base< Derived, internal::traits< Derived >::Scalar, NumTraits< internal::traits< Derived >::Scalar >::Real, DenseCoeffsBase< Derived > > Eigen::DenseCoeffsBase< Derived > Eigen::ProductBase< Derived, Lhs, Rhs > Eigen::ProductBase< DenseTimeSparseProduct< Lhs, Rhs >, Lhs, Rhs > Eigen::ProductBase< DenseTimeSparseSelfAdjointProduct< Lhs, Rhs, UpLo >, Lhs, Rhs > Eigen::ProductBase< GeneralProduct< Lhs, Rhs, GemmProduct >, Lhs, Rhs > Eigen::ProductBase< GeneralProduct< Lhs, Rhs, GemvProduct >, Lhs, Rhs > Eigen::ProductBase< GeneralProduct< Lhs, Rhs, OuterProduct >, Lhs, Rhs > Eigen::ProductBase< ScaledProduct< NestedProduct >, NestedProduct::_LhsNested, NestedProduct::_RhsNested > Eigen::ProductBase< SelfadjointProductMatrix< Lhs, 0, true, Rhs, RhsMode, false >, Lhs, Rhs > Eigen::ProductBase< SelfadjointProductMatrix< Lhs, LhsMode, false, Rhs, 0, true >, Lhs, Rhs > Eigen::ProductBase< SelfadjointProductMatrix< Lhs, LhsMode, false, Rhs, RhsMode, false >, Lhs, Rhs > Eigen::ProductBase< SparseSelfAdjointTimeDenseProduct< Lhs, Rhs, UpLo >, Lhs, Rhs > Eigen::ProductBase< SparseTimeDenseProduct< Lhs, Rhs >, Lhs, Rhs > Eigen::ProductBase< TriangularProduct< Mode, false, Lhs, true, Rhs, false >, Lhs, Rhs > Eigen::ProductBase< TriangularProduct< Mode, LhsIsTriangular, Lhs, false, Rhs, false >, Lhs, Rhs > Eigen::ProductBase< TriangularProduct< Mode, true, Lhs, false, Rhs, true >, Lhs, Rhs >

Classes

struct  ConstDiagonalIndexReturnType
 
struct  ConstSelfAdjointViewReturnType
 
struct  ConstTriangularViewReturnType
 
struct  cross_product_return_type
 
struct  DiagonalIndexReturnType
 
struct  SelfAdjointViewReturnType
 
struct  TriangularViewReturnType
 

Public Types

enum  { SizeMinusOne = SizeAtCompileTime==Dynamic ? Dynamic : SizeAtCompileTime-1 }
 
typedef MatrixBase StorageBaseType
 
typedef internal::traits< Derived >::StorageKind StorageKind
 
typedef internal::traits< Derived >::Index Index
 
typedef internal::traits< Derived >::Scalar Scalar
 
typedef internal::packet_traits< Scalar >::type PacketScalar
 
typedef NumTraits< Scalar >::Real RealScalar
 
typedef DenseBase< Derived > Base
 
typedef Base::CoeffReturnType CoeffReturnType
 
typedef Base::ConstTransposeReturnType ConstTransposeReturnType
 
typedef Base::RowXpr RowXpr
 
typedef Base::ColXpr ColXpr
 
typedef Matrix< Scalar, EIGEN_SIZE_MAX(RowsAtCompileTime, ColsAtCompileTime), EIGEN_SIZE_MAX(RowsAtCompileTime, ColsAtCompileTime)> SquareMatrixType
 type of the equivalent square matrix
 
typedef Matrix< typename internal::traits< Derived >::Scalar, internal::traits< Derived >::RowsAtCompileTime, internal::traits< Derived >::ColsAtCompileTime, AutoAlign|(internal::traits< Derived >::Flags &RowMajorBit ? RowMajor :ColMajor), internal::traits< Derived >::MaxRowsAtCompileTime, internal::traits< Derived >::MaxColsAtCompileTimePlainObject
 The plain matrix type corresponding to this expression. More...
 
typedef CwiseNullaryOp< internal::scalar_constant_op< Scalar >, Derived > ConstantReturnType
 
typedef internal::conditional< NumTraits< Scalar >::IsComplex, CwiseUnaryOp< internal::scalar_conjugate_op< Scalar >, ConstTransposeReturnType >, ConstTransposeReturnType >::type AdjointReturnType
 
typedef Matrix< std::complex< RealScalar >, internal::traits< Derived >::ColsAtCompileTime, 1, ColMajorEigenvaluesReturnType
 
typedef CwiseNullaryOp< internal::scalar_identity_op< Scalar >, Derived > IdentityReturnType
 
typedef Block< const CwiseNullaryOp< internal::scalar_identity_op< Scalar >, SquareMatrixType >, internal::traits< Derived >::RowsAtCompileTime, internal::traits< Derived >::ColsAtCompileTimeBasisReturnType
 
typedef CwiseUnaryOp< internal::scalar_multiple_op< Scalar >, const Derived > ScalarMultipleReturnType
 
typedef CwiseUnaryOp< internal::scalar_quotient1_op< Scalar >, const Derived > ScalarQuotient1ReturnType
 
typedef internal::conditional< NumTraits< Scalar >::IsComplex, const CwiseUnaryOp< internal::scalar_conjugate_op< Scalar >, const Derived >, const Derived &>::type ConjugateReturnType
 
typedef internal::conditional< NumTraits< Scalar >::IsComplex, const CwiseUnaryOp< internal::scalar_real_op< Scalar >, const Derived >, const Derived &>::type RealReturnType
 
typedef internal::conditional< NumTraits< Scalar >::IsComplex, CwiseUnaryView< internal::scalar_real_ref_op< Scalar >, Derived >, Derived &>::type NonConstRealReturnType
 
typedef CwiseUnaryOp< internal::scalar_imag_op< Scalar >, const Derived > ImagReturnType
 
typedef CwiseUnaryView< internal::scalar_imag_ref_op< Scalar >, Derived > NonConstImagReturnType
 
typedef CwiseBinaryOp< internal::scalar_cmp_op< Scalar, internal::cmp_EQ >, const Derived, const ConstantReturnTypeCwiseScalarEqualReturnType
 
typedef Diagonal< Derived > DiagonalReturnType
 
typedef internal::add_const< Diagonal< const Derived > >::type ConstDiagonalReturnType
 
typedef Diagonal< Derived, DynamicIndexDiagonalDynamicIndexReturnType
 
typedef internal::add_const< Diagonal< const Derived, DynamicIndex > >::type ConstDiagonalDynamicIndexReturnType
 
typedef Block< const Derived, internal::traits< Derived >::ColsAtCompileTime==1 ? SizeMinusOne :1, internal::traits< Derived >::ColsAtCompileTime==1 ? 1 :SizeMinusOne > ConstStartMinusOne
 
typedef CwiseUnaryOp< internal::scalar_quotient1_op< typename internal::traits< Derived >::Scalar >, const ConstStartMinusOneHNormalizedReturnType
 
typedef internal::stem_function< Scalar >::type StemFunction
 
- Public Types inherited from Eigen::DenseBase< Derived >
enum  {
  RowsAtCompileTime = internal::traits<Derived>::RowsAtCompileTime, ColsAtCompileTime = internal::traits<Derived>::ColsAtCompileTime, SizeAtCompileTime, MaxRowsAtCompileTime = internal::traits<Derived>::MaxRowsAtCompileTime,
  MaxColsAtCompileTime = internal::traits<Derived>::MaxColsAtCompileTime, MaxSizeAtCompileTime, IsVectorAtCompileTime, Flags = internal::traits<Derived>::Flags,
  IsRowMajor = int(Flags) & RowMajorBit, InnerSizeAtCompileTime, CoeffReadCost = internal::traits<Derived>::CoeffReadCost, InnerStrideAtCompileTime = internal::inner_stride_at_compile_time<Derived>::ret,
  OuterStrideAtCompileTime = internal::outer_stride_at_compile_time<Derived>::ret
}
 
enum  { ThisConstantIsPrivateInPlainObjectBase }
 
typedef internal::traits< Derived >::StorageKind StorageKind
 
typedef internal::traits< Derived >::Index Index
 The type of indices. More...
 
typedef internal::traits< Derived >::Scalar Scalar
 
typedef internal::packet_traits< Scalar >::type PacketScalar
 
typedef NumTraits< Scalar >::Real RealScalar
 
typedef internal::special_scalar_op_base< Derived, Scalar, RealScalar, DenseCoeffsBase< Derived > > Base
 
typedef Base::CoeffReturnType CoeffReturnType
 
typedef CwiseNullaryOp< internal::scalar_constant_op< Scalar >, Derived > ConstantReturnType
 
typedef CwiseNullaryOp< internal::linspaced_op< Scalar, false >, Derived > SequentialLinSpacedReturnType
 
typedef CwiseNullaryOp< internal::linspaced_op< Scalar, true >, Derived > RandomAccessLinSpacedReturnType
 
typedef Matrix< typename NumTraits< typename internal::traits< Derived >::Scalar >::Real, internal::traits< Derived >::ColsAtCompileTime, 1 > EigenvaluesReturnType
 
typedef internal::add_const< Transpose< const Derived > >::type ConstTransposeReturnType
 
typedef internal::add_const_on_value_type< typename internal::eval< Derived >::type >::type EvalReturnType
 
typedef VectorwiseOp< Derived, HorizontalRowwiseReturnType
 
typedef const VectorwiseOp< const Derived, HorizontalConstRowwiseReturnType
 
typedef VectorwiseOp< Derived, VerticalColwiseReturnType
 
typedef const VectorwiseOp< const Derived, VerticalConstColwiseReturnType
 
typedef Replicate< Derived, Dynamic, DynamicReplicateReturnType
 
typedef Reverse< Derived, BothDirectionsReverseReturnType
 
typedef const Reverse< const Derived, BothDirectionsConstReverseReturnType
 
typedef Block< Derived, internal::traits< Derived >::RowsAtCompileTime, 1, !IsRowMajorColXpr
 
typedef const Block< const Derived, internal::traits< Derived >::RowsAtCompileTime, 1, !IsRowMajorConstColXpr
 
typedef Block< Derived, 1, internal::traits< Derived >::ColsAtCompileTime, IsRowMajorRowXpr
 
typedef const Block< const Derived, 1, internal::traits< Derived >::ColsAtCompileTime, IsRowMajorConstRowXpr
 
typedef Block< Derived, internal::traits< Derived >::RowsAtCompileTime, Dynamic, !IsRowMajorColsBlockXpr
 
typedef const Block< const Derived, internal::traits< Derived >::RowsAtCompileTime, Dynamic, !IsRowMajorConstColsBlockXpr
 
typedef Block< Derived, Dynamic, internal::traits< Derived >::ColsAtCompileTime, IsRowMajorRowsBlockXpr
 
typedef const Block< const Derived, Dynamic, internal::traits< Derived >::ColsAtCompileTime, IsRowMajorConstRowsBlockXpr
 
typedef VectorBlock< Derived > SegmentReturnType
 
typedef const VectorBlock< const Derived > ConstSegmentReturnType
 

Public Member Functions

Index diagonalSize () const
 
const CwiseUnaryOp< internal::scalar_opposite_op< typename internal::traits< Derived >::Scalar >, const Derived > operator- () const
 
const ScalarMultipleReturnType operator* (const Scalar &scalar) const
 
const CwiseUnaryOp< internal::scalar_quotient1_op< typename internal::traits< Derived >::Scalar >, const Derived > operator/ (const Scalar &scalar) const
 
const CwiseUnaryOp< internal::scalar_multiple2_op< Scalar, std::complex< Scalar > >, const Derived > operator* (const std::complex< Scalar > &scalar) const
 Overloaded for efficient real matrix times complex scalar value.
 
template<typename NewType >
internal::cast_return_type< Derived, const CwiseUnaryOp< internal::scalar_cast_op< typename internal::traits< Derived >::Scalar, NewType >, const Derived > >::type cast () const
 
ConjugateReturnType conjugate () const
 
RealReturnType real () const
 
const ImagReturnType imag () const
 
template<typename CustomUnaryOp >
const CwiseUnaryOp< CustomUnaryOp, const Derived > unaryExpr (const CustomUnaryOp &func=CustomUnaryOp()) const
 Apply a unary operator coefficient-wise. More...
 
template<typename CustomViewOp >
const CwiseUnaryView< CustomViewOp, const Derived > unaryViewExpr (const CustomViewOp &func=CustomViewOp()) const
 
NonConstRealReturnType real ()
 
NonConstImagReturnType imag ()
 
template<typename CustomBinaryOp , typename OtherDerived >
EIGEN_STRONG_INLINE const CwiseBinaryOp< CustomBinaryOp, const Derived, const OtherDerived > binaryExpr (const EIGEN_CURRENT_STORAGE_BASE_CLASS< OtherDerived > &other, const CustomBinaryOp &func=CustomBinaryOp()) const
 
EIGEN_STRONG_INLINE const CwiseUnaryOp< internal::scalar_abs_op< Scalar >, const Derived > cwiseAbs () const
 
EIGEN_STRONG_INLINE const CwiseUnaryOp< internal::scalar_abs2_op< Scalar >, const Derived > cwiseAbs2 () const
 
const CwiseUnaryOp< internal::scalar_sqrt_op< Scalar >, const Derived > cwiseSqrt () const
 
const CwiseUnaryOp< internal::scalar_inverse_op< Scalar >, const Derived > cwiseInverse () const
 
template<typename OtherDerived >
EIGEN_STRONG_INLINE const EIGEN_CWISE_PRODUCT_RETURN_TYPE (Derived, OtherDerived) cwiseProduct(const EIGEN_CURRENT_STORAGE_BASE_CLASS< OtherDerived > &other) const
 
template<typename OtherDerived >
const CwiseBinaryOp< std::equal_to< Scalar >, const Derived, const OtherDerived > cwiseEqual (const EIGEN_CURRENT_STORAGE_BASE_CLASS< OtherDerived > &other) const
 
template<typename OtherDerived >
const CwiseBinaryOp< std::not_equal_to< Scalar >, const Derived, const OtherDerived > cwiseNotEqual (const EIGEN_CURRENT_STORAGE_BASE_CLASS< OtherDerived > &other) const
 
template<typename OtherDerived >
EIGEN_STRONG_INLINE const CwiseBinaryOp< internal::scalar_min_op< Scalar >, const Derived, const OtherDerived > cwiseMin (const EIGEN_CURRENT_STORAGE_BASE_CLASS< OtherDerived > &other) const
 
EIGEN_STRONG_INLINE const CwiseBinaryOp< internal::scalar_min_op< Scalar >, const Derived, const ConstantReturnTypecwiseMin (const Scalar &other) const
 
template<typename OtherDerived >
EIGEN_STRONG_INLINE const CwiseBinaryOp< internal::scalar_max_op< Scalar >, const Derived, const OtherDerived > cwiseMax (const EIGEN_CURRENT_STORAGE_BASE_CLASS< OtherDerived > &other) const
 
EIGEN_STRONG_INLINE const CwiseBinaryOp< internal::scalar_max_op< Scalar >, const Derived, const ConstantReturnTypecwiseMax (const Scalar &other) const
 
template<typename OtherDerived >
EIGEN_STRONG_INLINE const CwiseBinaryOp< internal::scalar_quotient_op< Scalar >, const Derived, const OtherDerived > cwiseQuotient (const EIGEN_CURRENT_STORAGE_BASE_CLASS< OtherDerived > &other) const
 
const CwiseScalarEqualReturnType cwiseEqual (const Scalar &s) const
 
Derived & operator= (const MatrixBase &other)
 Special case of the template operator=, in order to prevent the compiler from generating a default operator= (issue hit with g++ 4.1)
 
template<typename OtherDerived >
Derived & operator= (const DenseBase< OtherDerived > &other)
 
template<typename OtherDerived >
Derived & operator= (const EigenBase< OtherDerived > &other)
 
template<typename OtherDerived >
Derived & operator= (const ReturnByValue< OtherDerived > &other)
 
template<typename ProductDerived , typename Lhs , typename Rhs >
Derived & lazyAssign (const ProductBase< ProductDerived, Lhs, Rhs > &other)
 
template<typename MatrixPower , typename Lhs , typename Rhs >
Derived & lazyAssign (const MatrixPowerProduct< MatrixPower, Lhs, Rhs > &other)
 
template<typename OtherDerived >
Derived & operator+= (const MatrixBase< OtherDerived > &other)
 
template<typename OtherDerived >
Derived & operator-= (const MatrixBase< OtherDerived > &other)
 
template<typename OtherDerived >
const ProductReturnType< Derived, OtherDerived >::Type operator* (const MatrixBase< OtherDerived > &other) const
 
template<typename OtherDerived >
const LazyProductReturnType< Derived, OtherDerived >::Type lazyProduct (const MatrixBase< OtherDerived > &other) const
 
template<typename OtherDerived >
Derived & operator*= (const EigenBase< OtherDerived > &other)
 replaces *this by *this * other. More...
 
template<typename OtherDerived >
void applyOnTheLeft (const EigenBase< OtherDerived > &other)
 replaces *this by other * *this. More...
 
template<typename OtherDerived >
void applyOnTheRight (const EigenBase< OtherDerived > &other)
 replaces *this by *this * other. More...
 
template<typename DiagonalDerived >
const DiagonalProduct< Derived, DiagonalDerived, OnTheRightoperator* (const DiagonalBase< DiagonalDerived > &diagonal) const
 
template<typename OtherDerived >
internal::scalar_product_traits< typename internal::traits< Derived >::Scalar, typename internal::traits< OtherDerived >::Scalar >::ReturnType dot (const MatrixBase< OtherDerived > &other) const
 
RealScalar squaredNorm () const
 
RealScalar norm () const
 
RealScalar stableNorm () const
 
RealScalar blueNorm () const
 
RealScalar hypotNorm () const
 
const PlainObject normalized () const
 
void normalize ()
 Normalizes the vector, i.e. More...
 
const AdjointReturnType adjoint () const
 
void adjointInPlace ()
 This is the "in place" version of adjoint(): it replaces *this by its own transpose. More...
 
DiagonalReturnType diagonal ()
 
ConstDiagonalReturnType diagonal () const
 This is the const version of diagonal(). More...
 
template<int Index>
DiagonalIndexReturnType< Index >::Type diagonal ()
 
template<int Index>
ConstDiagonalIndexReturnType< Index >::Type diagonal () const
 
DiagonalDynamicIndexReturnType diagonal (Index index)
 
ConstDiagonalDynamicIndexReturnType diagonal (Index index) const
 This is the const version of diagonal(Index). More...
 
template<unsigned int Mode>
TriangularViewReturnType< Mode >::Type triangularView ()
 
template<unsigned int Mode>
ConstTriangularViewReturnType< Mode >::Type triangularView () const
 
template<unsigned int UpLo>
SelfAdjointViewReturnType< UpLo >::Type selfadjointView ()
 
template<unsigned int UpLo>
ConstSelfAdjointViewReturnType< UpLo >::Type selfadjointView () const
 
const SparseView< Derived > sparseView (const Scalar &m_reference=Scalar(0), const typename NumTraits< Scalar >::Real &m_epsilon=NumTraits< Scalar >::dummy_precision()) const
 
const DiagonalWrapper< const Derived > asDiagonal () const
 
const PermutationWrapper< const Derived > asPermutation () const
 
Derived & setIdentity ()
 Writes the identity expression (not necessarily square) into *this. More...
 
Derived & setIdentity (Index rows, Index cols)
 Resizes to the given size, and writes the identity expression (not necessarily square) into *this. More...
 
bool isIdentity (const RealScalar &prec=NumTraits< Scalar >::dummy_precision()) const
 
bool isDiagonal (const RealScalar &prec=NumTraits< Scalar >::dummy_precision()) const
 
bool isUpperTriangular (const RealScalar &prec=NumTraits< Scalar >::dummy_precision()) const
 
bool isLowerTriangular (const RealScalar &prec=NumTraits< Scalar >::dummy_precision()) const
 
template<typename OtherDerived >
bool isOrthogonal (const MatrixBase< OtherDerived > &other, const RealScalar &prec=NumTraits< Scalar >::dummy_precision()) const
 
bool isUnitary (const RealScalar &prec=NumTraits< Scalar >::dummy_precision()) const
 
template<typename OtherDerived >
bool operator== (const MatrixBase< OtherDerived > &other) const
 
template<typename OtherDerived >
bool operator!= (const MatrixBase< OtherDerived > &other) const
 
NoAlias< Derived, Eigen::MatrixBasenoalias ()
 
const ForceAlignedAccess< Derived > forceAlignedAccess () const
 
ForceAlignedAccess< Derived > forceAlignedAccess ()
 
template<bool Enable>
internal::add_const_on_value_type< typename internal::conditional< Enable, ForceAlignedAccess< Derived >, Derived & >::type >::type forceAlignedAccessIf () const
 
template<bool Enable>
internal::conditional< Enable, ForceAlignedAccess< Derived >, Derived & >::type forceAlignedAccessIf ()
 
Scalar trace () const
 
template<int p>
RealScalar lpNorm () const
 
MatrixBase< Derived > & matrix ()
 
const MatrixBase< Derived > & matrix () const
 
ArrayWrapper< Derived > array ()
 
const ArrayWrapper< const Derived > array () const
 
const FullPivLU< PlainObjectfullPivLu () const
 
const PartialPivLU< PlainObjectpartialPivLu () const
 
const internal::inverse_impl< Derived > inverse () const
 
template<typename ResultType >
void computeInverseAndDetWithCheck (ResultType &inverse, typename ResultType::Scalar &determinant, bool &invertible, const RealScalar &absDeterminantThreshold=NumTraits< Scalar >::dummy_precision()) const
 
template<typename ResultType >
void computeInverseWithCheck (ResultType &inverse, bool &invertible, const RealScalar &absDeterminantThreshold=NumTraits< Scalar >::dummy_precision()) const
 
Scalar determinant () const
 
const LLT< PlainObjectllt () const
 
const LDLT< PlainObjectldlt () const
 
const HouseholderQR< PlainObjecthouseholderQr () const
 
const ColPivHouseholderQR< PlainObjectcolPivHouseholderQr () const
 
const FullPivHouseholderQR< PlainObjectfullPivHouseholderQr () const
 
EigenvaluesReturnType eigenvalues () const
 Computes the eigenvalues of a matrix. More...
 
RealScalar operatorNorm () const
 Computes the L2 operator norm. More...
 
JacobiSVD< PlainObjectjacobiSvd (unsigned int computationOptions=0) const
 
template<typename OtherDerived >
cross_product_return_type< OtherDerived >::type cross (const MatrixBase< OtherDerived > &other) const
 
template<typename OtherDerived >
PlainObject cross3 (const MatrixBase< OtherDerived > &other) const
 
PlainObject unitOrthogonal (void) const
 
Matrix< Scalar, 3, 1 > eulerAngles (Index a0, Index a1, Index a2) const
 
const HNormalizedReturnType hnormalized () const
 
void makeHouseholderInPlace (Scalar &tau, RealScalar &beta)
 Computes the elementary reflector H such that: \( H *this = [ beta 0 ... 0]^T \) where the transformation H is: \( H = I - tau v v^*\) and the vector v is: \( v^T = [1 essential^T] \). More...
 
template<typename EssentialPart >
void makeHouseholder (EssentialPart &essential, Scalar &tau, RealScalar &beta) const
 Computes the elementary reflector H such that: \( H *this = [ beta 0 ... 0]^T \) where the transformation H is: \( H = I - tau v v^*\) and the vector v is: \( v^T = [1 essential^T] \). More...
 
template<typename EssentialPart >
void applyHouseholderOnTheLeft (const EssentialPart &essential, const Scalar &tau, Scalar *workspace)
 Apply the elementary reflector H given by \( H = I - tau v v^*\) with \( v^T = [1 essential^T] \) from the left to a vector or matrix. More...
 
template<typename EssentialPart >
void applyHouseholderOnTheRight (const EssentialPart &essential, const Scalar &tau, Scalar *workspace)
 Apply the elementary reflector H given by \( H = I - tau v v^*\) with \( v^T = [1 essential^T] \) from the right to a vector or matrix. More...
 
template<typename OtherScalar >
void applyOnTheLeft (Index p, Index q, const JacobiRotation< OtherScalar > &j)
 Applies the rotation in the plane j to the rows p and q of *this, i.e., it computes B = J * B, with \( B = \left ( \begin{array}{cc} \text{*this.row}(p) \\ \text{*this.row}(q) \end{array} \right ) \). More...
 
template<typename OtherScalar >
void applyOnTheRight (Index p, Index q, const JacobiRotation< OtherScalar > &j)
 Applies the rotation in the plane j to the columns p and q of *this, i.e., it computes B = B * J with \( B = \left ( \begin{array}{cc} \text{*this.col}(p) & \text{*this.col}(q) \end{array} \right ) \). More...
 
template<typename OtherDerived >
EIGEN_STRONG_INLINE const SparseMatrixBase< OtherDerived >::template CwiseProductDenseReturnType< Derived >::Type cwiseProduct (const SparseMatrixBase< OtherDerived > &other) const
 
const MatrixExponentialReturnValue< Derived > exp () const
 
const MatrixFunctionReturnValue< Derived > matrixFunction (StemFunction f) const
 
const MatrixFunctionReturnValue< Derived > cosh () const
 
const MatrixFunctionReturnValue< Derived > sinh () const
 
const MatrixFunctionReturnValue< Derived > cos () const
 
const MatrixFunctionReturnValue< Derived > sin () const
 
const MatrixSquareRootReturnValue< Derived > sqrt () const
 
const MatrixLogarithmReturnValue< Derived > log () const
 
const MatrixPowerReturnValue< Derived > pow (const RealScalar &p) const
 
template<typename OtherDerived >
EIGEN_STRONG_INLINE Derived & operator= (const DenseBase< OtherDerived > &other)
 
template<typename OtherDerived >
EIGEN_STRONG_INLINE Derived & operator= (const EigenBase< OtherDerived > &other)
 
template<typename OtherDerived >
EIGEN_STRONG_INLINE Derived & operator= (const ReturnByValue< OtherDerived > &other)
 
template<typename OtherDerived >
EIGEN_STRONG_INLINE Derived & operator-= (const MatrixBase< OtherDerived > &other)
 replaces *this by *this - other. More...
 
template<typename OtherDerived >
EIGEN_STRONG_INLINE Derived & operator+= (const MatrixBase< OtherDerived > &other)
 replaces *this by *this + other. More...
 
template<int p>
NumTraits< typename internal::traits< Derived >::Scalar >::Real lpNorm () const
 
template<unsigned int UpLo>
MatrixBase< Derived >::template ConstSelfAdjointViewReturnType< UpLo >::Type selfadjointView () const
 
template<unsigned int UpLo>
MatrixBase< Derived >::template SelfAdjointViewReturnType< UpLo >::Type selfadjointView ()
 
template<unsigned int Mode>
MatrixBase< Derived >::template TriangularViewReturnType< Mode >::Type triangularView ()
 
template<unsigned int Mode>
MatrixBase< Derived >::template ConstTriangularViewReturnType< Mode >::Type triangularView () const
 This is the const version of MatrixBase::triangularView()
 
template<typename OtherDerived >
MatrixBase< Derived >::template cross_product_return_type< OtherDerived >::type cross (const MatrixBase< OtherDerived > &other) const
 
template<typename Derived >
MatrixBase< Derived >::ScalarMultipleReturnType operator* (const UniformScaling< Scalar > &s) const
 Concatenates a linear transformation matrix and a uniform scaling.
 
- Public Member Functions inherited from Eigen::DenseBase< Derived >
Index nonZeros () const
 
Index outerSize () const
 
Index innerSize () const
 
void resize (Index newSize)
 Only plain matrices/arrays, not expressions, may be resized; therefore the only useful resize methods are Matrix::resize() and Array::resize(). More...
 
void resize (Index nbRows, Index nbCols)
 Only plain matrices/arrays, not expressions, may be resized; therefore the only useful resize methods are Matrix::resize() and Array::resize(). More...
 
template<typename OtherDerived >
Derived & operator= (const DenseBase< OtherDerived > &other)
 Copies other into *this. More...
 
Derived & operator= (const DenseBase &other)
 Special case of the template operator=, in order to prevent the compiler from generating a default operator= (issue hit with g++ 4.1)
 
template<typename OtherDerived >
Derived & operator= (const EigenBase< OtherDerived > &other)
 Copies the generic expression other into *this. More...
 
template<typename OtherDerived >
Derived & operator+= (const EigenBase< OtherDerived > &other)
 
template<typename OtherDerived >
Derived & operator-= (const EigenBase< OtherDerived > &other)
 
template<typename OtherDerived >
Derived & operator= (const ReturnByValue< OtherDerived > &func)
 
template<typename OtherDerived >
Derived & lazyAssign (const DenseBase< OtherDerived > &other)
 
template<typename OtherDerived >
Derived & lazyAssign (const ReturnByValue< OtherDerived > &other)
 
CommaInitializer< Derived > operator<< (const Scalar &s)
 
template<unsigned int Added, unsigned int Removed>
const Flagged< Derived, Added, Removed > flagged () const
 
template<typename OtherDerived >
CommaInitializer< Derived > operator<< (const DenseBase< OtherDerived > &other)
 
Eigen::Transpose< Derived > transpose ()
 
ConstTransposeReturnType transpose () const
 This is the const version of transpose(). More...
 
void transposeInPlace ()
 This is the "in place" version of transpose(): it replaces *this by its own transpose. More...
 
void fill (const Scalar &value)
 Alias for setConstant(): sets all coefficients in this expression to val. More...
 
Derived & setConstant (const Scalar &value)
 Sets all coefficients in this expression to value. More...
 
Derived & setLinSpaced (Index size, const Scalar &low, const Scalar &high)
 Sets a linearly space vector. More...
 
Derived & setLinSpaced (const Scalar &low, const Scalar &high)
 Sets a linearly space vector. More...
 
Derived & setZero ()
 Sets all coefficients in this expression to zero. More...
 
Derived & setOnes ()
 Sets all coefficients in this expression to one. More...
 
Derived & setRandom ()
 Sets all coefficients in this expression to random values. More...
 
template<typename OtherDerived >
bool isApprox (const DenseBase< OtherDerived > &other, const RealScalar &prec=NumTraits< Scalar >::dummy_precision()) const
 
bool isMuchSmallerThan (const RealScalar &other, const RealScalar &prec=NumTraits< Scalar >::dummy_precision()) const
 
template<typename OtherDerived >
bool isMuchSmallerThan (const DenseBase< OtherDerived > &other, const RealScalar &prec=NumTraits< Scalar >::dummy_precision()) const
 
bool isApproxToConstant (const Scalar &value, const RealScalar &prec=NumTraits< Scalar >::dummy_precision()) const
 
bool isConstant (const Scalar &value, const RealScalar &prec=NumTraits< Scalar >::dummy_precision()) const
 This is just an alias for isApproxToConstant(). More...
 
bool isZero (const RealScalar &prec=NumTraits< Scalar >::dummy_precision()) const
 
bool isOnes (const RealScalar &prec=NumTraits< Scalar >::dummy_precision()) const
 
bool hasNaN () const
 
bool allFinite () const
 
Derived & operator*= (const Scalar &other)
 
Derived & operator/= (const Scalar &other)
 
EIGEN_STRONG_INLINE EvalReturnType eval () const
 
template<typename OtherDerived >
void swap (const DenseBase< OtherDerived > &other, int=OtherDerived::ThisConstantIsPrivateInPlainObjectBase)
 swaps *this with the expression other.
 
template<typename OtherDerived >
void swap (PlainObjectBase< OtherDerived > &other)
 swaps *this with the matrix or array other.
 
const NestByValue< Derived > nestByValue () const
 
const ForceAlignedAccess< Derived > forceAlignedAccess () const
 
ForceAlignedAccess< Derived > forceAlignedAccess ()
 
template<bool Enable>
const internal::conditional< Enable, ForceAlignedAccess< Derived >, Derived & >::type forceAlignedAccessIf () const
 
template<bool Enable>
internal::conditional< Enable, ForceAlignedAccess< Derived >, Derived & >::type forceAlignedAccessIf ()
 
Scalar sum () const
 
Scalar mean () const
 
Scalar trace () const
 
Scalar prod () const
 
internal::traits< Derived >::Scalar minCoeff () const
 
internal::traits< Derived >::Scalar maxCoeff () const
 
template<typename IndexType >
internal::traits< Derived >::Scalar minCoeff (IndexType *row, IndexType *col) const
 
template<typename IndexType >
internal::traits< Derived >::Scalar maxCoeff (IndexType *row, IndexType *col) const
 
template<typename IndexType >
internal::traits< Derived >::Scalar minCoeff (IndexType *index) const
 
template<typename IndexType >
internal::traits< Derived >::Scalar maxCoeff (IndexType *index) const
 
template<typename BinaryOp >
internal::result_of< BinaryOp(typename internal::traits< Derived >::Scalar)>::type redux (const BinaryOp &func) const
 
template<typename Visitor >
void visit (Visitor &func) const
 Applies the visitor visitor to the whole coefficients of the matrix or vector. More...
 
const WithFormat< Derived > format (const IOFormat &fmt) const
 
CoeffReturnType value () const
 
bool all (void) const
 
bool any (void) const
 
Index count () const
 
ConstRowwiseReturnType rowwise () const
 
RowwiseReturnType rowwise ()
 
ConstColwiseReturnType colwise () const
 
ColwiseReturnType colwise ()
 
template<typename ThenDerived , typename ElseDerived >
const Select< Derived, ThenDerived, ElseDerived > select (const DenseBase< ThenDerived > &thenMatrix, const DenseBase< ElseDerived > &elseMatrix) const
 
template<typename ThenDerived >
const Select< Derived, ThenDerived, typename ThenDerived::ConstantReturnType > select (const DenseBase< ThenDerived > &thenMatrix, const typename ThenDerived::Scalar &elseScalar) const
 Version of DenseBase::select(const DenseBase&, const DenseBase&) with the else expression being a scalar value. More...
 
template<typename ElseDerived >
const Select< Derived, typename ElseDerived::ConstantReturnType, ElseDerived > select (const typename ElseDerived::Scalar &thenScalar, const DenseBase< ElseDerived > &elseMatrix) const
 Version of DenseBase::select(const DenseBase&, const DenseBase&) with the then expression being a scalar value. More...
 
template<int p>
RealScalar lpNorm () const
 
template<int RowFactor, int ColFactor>
const Replicate< Derived, RowFactor, ColFactor > replicate () const
 
const ReplicateReturnType replicate (Index rowFacor, Index colFactor) const
 
ReverseReturnType reverse ()
 
ConstReverseReturnType reverse () const
 This is the const version of reverse(). More...
 
void reverseInPlace ()
 This is the "in place" version of reverse: it reverses *this. More...
 
Block< Derived > block (Index startRow, Index startCol, Index blockRows, Index blockCols)
 
const Block< const Derived > block (Index startRow, Index startCol, Index blockRows, Index blockCols) const
 This is the const version of block(Index,Index,Index,Index). More...
 
Block< Derived > topRightCorner (Index cRows, Index cCols)
 
const Block< const Derived > topRightCorner (Index cRows, Index cCols) const
 This is the const version of topRightCorner(Index, Index). More...
 
template<int CRows, int CCols>
Block< Derived, CRows, CCols > topRightCorner ()
 
template<int CRows, int CCols>
const Block< const Derived, CRows, CCols > topRightCorner () const
 This is the const version of topRightCorner<int, int>(). More...
 
template<int CRows, int CCols>
Block< Derived, CRows, CCols > topRightCorner (Index cRows, Index cCols)
 
template<int CRows, int CCols>
const Block< const Derived, CRows, CCols > topRightCorner (Index cRows, Index cCols) const
 This is the const version of topRightCorner<int, int>(Index, Index). More...
 
Block< Derived > topLeftCorner (Index cRows, Index cCols)
 
const Block< const Derived > topLeftCorner (Index cRows, Index cCols) const
 This is the const version of topLeftCorner(Index, Index). More...
 
template<int CRows, int CCols>
Block< Derived, CRows, CCols > topLeftCorner ()
 
template<int CRows, int CCols>
const Block< const Derived, CRows, CCols > topLeftCorner () const
 This is the const version of topLeftCorner<int, int>(). More...
 
template<int CRows, int CCols>
Block< Derived, CRows, CCols > topLeftCorner (Index cRows, Index cCols)
 
template<int CRows, int CCols>
const Block< const Derived, CRows, CCols > topLeftCorner (Index cRows, Index cCols) const
 This is the const version of topLeftCorner<int, int>(Index, Index). More...
 
Block< Derived > bottomRightCorner (Index cRows, Index cCols)
 
const Block< const Derived > bottomRightCorner (Index cRows, Index cCols) const
 This is the const version of bottomRightCorner(Index, Index). More...
 
template<int CRows, int CCols>
Block< Derived, CRows, CCols > bottomRightCorner ()
 
template<int CRows, int CCols>
const Block< const Derived, CRows, CCols > bottomRightCorner () const
 This is the const version of bottomRightCorner<int, int>(). More...
 
template<int CRows, int CCols>
Block< Derived, CRows, CCols > bottomRightCorner (Index cRows, Index cCols)
 
template<int CRows, int CCols>
const Block< const Derived, CRows, CCols > bottomRightCorner (Index cRows, Index cCols) const
 This is the const version of bottomRightCorner<int, int>(Index, Index). More...
 
Block< Derived > bottomLeftCorner (Index cRows, Index cCols)
 
const Block< const Derived > bottomLeftCorner (Index cRows, Index cCols) const
 This is the const version of bottomLeftCorner(Index, Index). More...
 
template<int CRows, int CCols>
Block< Derived, CRows, CCols > bottomLeftCorner ()
 
template<int CRows, int CCols>
const Block< const Derived, CRows, CCols > bottomLeftCorner () const
 This is the const version of bottomLeftCorner<int, int>(). More...
 
template<int CRows, int CCols>
Block< Derived, CRows, CCols > bottomLeftCorner (Index cRows, Index cCols)
 
template<int CRows, int CCols>
const Block< const Derived, CRows, CCols > bottomLeftCorner (Index cRows, Index cCols) const
 This is the const version of bottomLeftCorner<int, int>(Index, Index). More...
 
RowsBlockXpr topRows (Index n)
 
ConstRowsBlockXpr topRows (Index n) const
 This is the const version of topRows(Index). More...
 
template<int N>
NRowsBlockXpr< N >::Type topRows (Index n=N)
 
template<int N>
ConstNRowsBlockXpr< N >::Type topRows (Index n=N) const
 This is the const version of topRows<int>(). More...
 
RowsBlockXpr bottomRows (Index n)
 
ConstRowsBlockXpr bottomRows (Index n) const
 This is the const version of bottomRows(Index). More...
 
template<int N>
NRowsBlockXpr< N >::Type bottomRows (Index n=N)
 
template<int N>
ConstNRowsBlockXpr< N >::Type bottomRows (Index n=N) const
 This is the const version of bottomRows<int>(). More...
 
RowsBlockXpr middleRows (Index startRow, Index n)
 
ConstRowsBlockXpr middleRows (Index startRow, Index n) const
 This is the const version of middleRows(Index,Index). More...
 
template<int N>
NRowsBlockXpr< N >::Type middleRows (Index startRow, Index n=N)
 
template<int N>
ConstNRowsBlockXpr< N >::Type middleRows (Index startRow, Index n=N) const
 This is the const version of middleRows<int>(). More...
 
ColsBlockXpr leftCols (Index n)
 
ConstColsBlockXpr leftCols (Index n) const
 This is the const version of leftCols(Index). More...
 
template<int N>
NColsBlockXpr< N >::Type leftCols (Index n=N)
 
template<int N>
ConstNColsBlockXpr< N >::Type leftCols (Index n=N) const
 This is the const version of leftCols<int>(). More...
 
ColsBlockXpr rightCols (Index n)
 
ConstColsBlockXpr rightCols (Index n) const
 This is the const version of rightCols(Index). More...
 
template<int N>
NColsBlockXpr< N >::Type rightCols (Index n=N)
 
template<int N>
ConstNColsBlockXpr< N >::Type rightCols (Index n=N) const
 This is the const version of rightCols<int>(). More...
 
ColsBlockXpr middleCols (Index startCol, Index numCols)
 
ConstColsBlockXpr middleCols (Index startCol, Index numCols) const
 This is the const version of middleCols(Index,Index). More...
 
template<int N>
NColsBlockXpr< N >::Type middleCols (Index startCol, Index n=N)
 
template<int N>
ConstNColsBlockXpr< N >::Type middleCols (Index startCol, Index n=N) const
 This is the const version of middleCols<int>(). More...
 
template<int BlockRows, int BlockCols>
Block< Derived, BlockRows, BlockCols > block (Index startRow, Index startCol)
 
template<int BlockRows, int BlockCols>
const Block< const Derived, BlockRows, BlockCols > block (Index startRow, Index startCol) const
 This is the const version of block<>(Index, Index). More...
 
template<int BlockRows, int BlockCols>
Block< Derived, BlockRows, BlockCols > block (Index startRow, Index startCol, Index blockRows, Index blockCols)
 
template<int BlockRows, int BlockCols>
const Block< const Derived, BlockRows, BlockCols > block (Index startRow, Index startCol, Index blockRows, Index blockCols) const
 This is the const version of block<>(Index, Index, Index, Index). More...
 
ColXpr col (Index i)
 
ConstColXpr col (Index i) const
 This is the const version of col(). More...
 
RowXpr row (Index i)
 
ConstRowXpr row (Index i) const
 This is the const version of row(). More...
 
SegmentReturnType segment (Index start, Index n)
 
ConstSegmentReturnType segment (Index start, Index n) const
 This is the const version of segment(Index,Index). More...
 
SegmentReturnType head (Index n)
 
ConstSegmentReturnType head (Index n) const
 This is the const version of head(Index). More...
 
SegmentReturnType tail (Index n)
 
ConstSegmentReturnType tail (Index n) const
 This is the const version of tail(Index). More...
 
template<int N>
FixedSegmentReturnType< N >::Type segment (Index start, Index n=N)
 
template<int N>
ConstFixedSegmentReturnType< N >::Type segment (Index start, Index n=N) const
 This is the const version of segment<int>(Index). More...
 
template<int N>
FixedSegmentReturnType< N >::Type head (Index n=N)
 
template<int N>
ConstFixedSegmentReturnType< N >::Type head (Index n=N) const
 This is the const version of head<int>(). More...
 
template<int N>
FixedSegmentReturnType< N >::Type tail (Index n=N)
 
template<int N>
ConstFixedSegmentReturnType< N >::Type tail (Index n=N) const
 This is the const version of tail<int>. More...
 
template<typename Dest >
void evalTo (Dest &) const
 
template<typename OtherDerived >
EIGEN_STRONG_INLINE Derived & lazyAssign (const DenseBase< OtherDerived > &other)
 
template<typename OtherDerived >
EIGEN_STRONG_INLINE Derived & operator= (const DenseBase< OtherDerived > &other)
 
template<typename CustomNullaryOp >
EIGEN_STRONG_INLINE const CwiseNullaryOp< CustomNullaryOp, Derived > NullaryExpr (Index rows, Index cols, const CustomNullaryOp &func)
 
template<typename CustomNullaryOp >
EIGEN_STRONG_INLINE const CwiseNullaryOp< CustomNullaryOp, Derived > NullaryExpr (Index size, const CustomNullaryOp &func)
 
template<typename CustomNullaryOp >
EIGEN_STRONG_INLINE const CwiseNullaryOp< CustomNullaryOp, Derived > NullaryExpr (const CustomNullaryOp &func)
 
template<typename Derived >
bool isMuchSmallerThan (const typename NumTraits< Scalar >::Real &other, const RealScalar &prec) const
 
template<typename Func >
EIGEN_STRONG_INLINE internal::result_of< Func(typename internal::traits< Derived >::Scalar)>::type redux (const Func &func) const
 
- Public Member Functions inherited from Eigen::internal::special_scalar_op_base< Derived, internal::traits< Derived >::Scalar, NumTraits< internal::traits< Derived >::Scalar >::Real, DenseCoeffsBase< Derived > >
void operator* () const
 

Static Public Member Functions

static const IdentityReturnType Identity ()
 
static const IdentityReturnType Identity (Index rows, Index cols)
 
static const BasisReturnType Unit (Index size, Index i)
 
static const BasisReturnType Unit (Index i)
 
static const BasisReturnType UnitX ()
 
static const BasisReturnType UnitY ()
 
static const BasisReturnType UnitZ ()
 
static const BasisReturnType UnitW ()
 
- Static Public Member Functions inherited from Eigen::DenseBase< Derived >
static const ConstantReturnType Constant (Index rows, Index cols, const Scalar &value)
 
static const ConstantReturnType Constant (Index size, const Scalar &value)
 
static const ConstantReturnType Constant (const Scalar &value)
 
static const SequentialLinSpacedReturnType LinSpaced (Sequential_t, Index size, const Scalar &low, const Scalar &high)
 Sets a linearly space vector. More...
 
static const RandomAccessLinSpacedReturnType LinSpaced (Index size, const Scalar &low, const Scalar &high)
 Sets a linearly space vector. More...
 
static const SequentialLinSpacedReturnType LinSpaced (Sequential_t, const Scalar &low, const Scalar &high)
 Sets a linearly space vector. More...
 
static const RandomAccessLinSpacedReturnType LinSpaced (const Scalar &low, const Scalar &high)
 Sets a linearly space vector. More...
 
template<typename CustomNullaryOp >
static const CwiseNullaryOp< CustomNullaryOp, Derived > NullaryExpr (Index rows, Index cols, const CustomNullaryOp &func)
 
template<typename CustomNullaryOp >
static const CwiseNullaryOp< CustomNullaryOp, Derived > NullaryExpr (Index size, const CustomNullaryOp &func)
 
template<typename CustomNullaryOp >
static const CwiseNullaryOp< CustomNullaryOp, Derived > NullaryExpr (const CustomNullaryOp &func)
 
static const ConstantReturnType Zero (Index rows, Index cols)
 
static const ConstantReturnType Zero (Index size)
 
static const ConstantReturnType Zero ()
 
static const ConstantReturnType Ones (Index rows, Index cols)
 
static const ConstantReturnType Ones (Index size)
 
static const ConstantReturnType Ones ()
 
static const CwiseNullaryOp< internal::scalar_random_op< Scalar >, Derived > Random (Index rows, Index cols)
 
static const CwiseNullaryOp< internal::scalar_random_op< Scalar >, Derived > Random (Index size)
 
static const CwiseNullaryOp< internal::scalar_random_op< Scalar >, Derived > Random ()
 

Protected Member Functions

template<typename OtherDerived >
Derived & operator+= (const ArrayBase< OtherDerived > &)
 
template<typename OtherDerived >
Derived & operator-= (const ArrayBase< OtherDerived > &)
 
- Protected Member Functions inherited from Eigen::DenseBase< Derived >
template<typename OtherDerived >
void checkTransposeAliasing (const OtherDerived &other) const
 
 DenseBase ()
 Default constructor. More...
 

Friends

const ScalarMultipleReturnType operator* (const Scalar &scalar, const StorageBaseType &matrix)
 
const CwiseUnaryOp< internal::scalar_multiple2_op< Scalar, std::complex< Scalar > >, const Derived > operator* (const std::complex< Scalar > &scalar, const StorageBaseType &matrix)
 

Additional Inherited Members

Detailed Description

template<typename Derived>
class Eigen::MatrixBase< Derived >

Base class for all dense matrices, vectors, and expressions.

This class is the base that is inherited by all matrix, vector, and related expression types. Most of the Eigen API is contained in this class, and its base classes. Other important classes for the Eigen API are Matrix, and VectorwiseOp.

Note that some methods are defined in other modules such as the LU_Module LU module for all functions related to matrix inversions.

Template Parameters
Derivedis the derived type, e.g. a matrix type, or an expression, etc.

When writing a function taking Eigen objects as argument, if you want your function to take as argument any matrix, vector, or expression, just let it take a MatrixBase argument. As an example, here is a function printFirstRow which, given a matrix, vector, or expression x, prints the first row of x.

template<typename Derived>
void printFirstRow(const Eigen::MatrixBase<Derived>& x)
{
cout << x.row(0) << endl;
}

This class can be extended with the help of the plugin mechanism described on the page Customizing/Extending Eigen by defining the preprocessor symbol EIGEN_MATRIXBASE_PLUGIN.

See also
The class hierarchy

Member Typedef Documentation

§ PlainObject

The plain matrix type corresponding to this expression.

This is not necessarily exactly the return type of eval(). In the case of plain matrices, the return type of eval() is a const reference to a matrix, not a matrix! It is however guaranteed that the return type of eval() is either PlainObject or const PlainObject&.

Member Function Documentation

§ adjoint()

template<typename Derived >
const MatrixBase< Derived >::AdjointReturnType Eigen::MatrixBase< Derived >::adjoint ( ) const
inline
Returns
an expression of the adjoint (i.e. conjugate transpose) of *this.

Example:

Output:

Warning
If you want to replace a matrix by its own adjoint, do NOT do this:
m = m.adjoint(); // bug!!! caused by aliasing effect
Instead, use the adjointInPlace() method:
m.adjointInPlace();
which gives Eigen good opportunities for optimization, or alternatively you can also do:
m = m.adjoint().eval();
See also
adjointInPlace(), transpose(), conjugate(), class Transpose, class internal::scalar_conjugate_op

§ adjointInPlace()

template<typename Derived >
void Eigen::MatrixBase< Derived >::adjointInPlace ( )
inline

This is the "in place" version of adjoint(): it replaces *this by its own transpose.

Thus, doing

m.adjointInPlace();

has the same effect on m as doing

m = m.adjoint().eval();

and is faster and also safer because in the latter line of code, forgetting the eval() results in a bug caused by aliasing.

Notice however that this method is only useful if you want to replace a matrix by its own adjoint. If you just need the adjoint of a matrix, use adjoint().

Note
if the matrix is not square, then *this must be a resizable matrix. This excludes (non-square) fixed-size matrices, block-expressions and maps.
See also
transpose(), adjoint(), transposeInPlace()

§ applyHouseholderOnTheLeft()

template<typename Derived >
template<typename EssentialPart >
void Eigen::MatrixBase< Derived >::applyHouseholderOnTheLeft ( const EssentialPart &  essential,
const Scalar &  tau,
Scalar *  workspace 
)

Apply the elementary reflector H given by \( H = I - tau v v^*\) with \( v^T = [1 essential^T] \) from the left to a vector or matrix.

On input:

Parameters
essentialthe essential part of the vector v
tauthe scaling factor of the Householder transformation
workspacea pointer to working space with at least this->cols() * essential.size() entries
See also
MatrixBase::makeHouseholder(), MatrixBase::makeHouseholderInPlace(), MatrixBase::applyHouseholderOnTheRight()

§ applyHouseholderOnTheRight()

template<typename Derived >
template<typename EssentialPart >
void Eigen::MatrixBase< Derived >::applyHouseholderOnTheRight ( const EssentialPart &  essential,
const Scalar &  tau,
Scalar *  workspace 
)

Apply the elementary reflector H given by \( H = I - tau v v^*\) with \( v^T = [1 essential^T] \) from the right to a vector or matrix.

On input:

Parameters
essentialthe essential part of the vector v
tauthe scaling factor of the Householder transformation
workspacea pointer to working space with at least this->cols() * essential.size() entries
See also
MatrixBase::makeHouseholder(), MatrixBase::makeHouseholderInPlace(), MatrixBase::applyHouseholderOnTheLeft()

§ applyOnTheLeft() [1/2]

template<typename Derived >
template<typename OtherDerived >
void Eigen::MatrixBase< Derived >::applyOnTheLeft ( const EigenBase< OtherDerived > &  other)
inline

replaces *this by other * *this.

Example:

Output:

 

§ applyOnTheLeft() [2/2]

template<typename Derived >
template<typename OtherScalar >
void Eigen::MatrixBase< Derived >::applyOnTheLeft ( Index  p,
Index  q,
const JacobiRotation< OtherScalar > &  j 
)
inline

Applies the rotation in the plane j to the rows p and q of *this, i.e., it computes B = J * B, with \( B = \left ( \begin{array}{cc} \text{*this.row}(p) \\ \text{*this.row}(q) \end{array} \right ) \).

See also
class JacobiRotation, MatrixBase::applyOnTheRight(), internal::apply_rotation_in_the_plane()

§ applyOnTheRight()

template<typename Derived >
template<typename OtherDerived >
void Eigen::MatrixBase< Derived >::applyOnTheRight ( const EigenBase< OtherDerived > &  other)
inline

replaces *this by *this * other.

It is equivalent to MatrixBase::operator*=().

Example:

Output:

 

§ array()

template<typename Derived>
ArrayWrapper<Derived> Eigen::MatrixBase< Derived >::array ( )
inline
Returns
an Array expression of this matrix
See also
ArrayBase::matrix()

§ asDiagonal()

template<typename Derived >
const DiagonalWrapper< const Derived > Eigen::MatrixBase< Derived >::asDiagonal ( ) const
inline
Returns
a pseudo-expression of a diagonal matrix with *this as vector of diagonal coefficients

Example:

Output:

See also
class DiagonalWrapper, class DiagonalMatrix, diagonal(), isDiagonal()

§ binaryExpr()

template<typename Derived>
template<typename CustomBinaryOp , typename OtherDerived >
EIGEN_STRONG_INLINE const CwiseBinaryOp<CustomBinaryOp, const Derived, const OtherDerived> Eigen::MatrixBase< Derived >::binaryExpr ( const EIGEN_CURRENT_STORAGE_BASE_CLASS< OtherDerived > &  other,
const CustomBinaryOp &  func = CustomBinaryOp() 
) const
inline
Returns
an expression of the difference of *this and other
Note
If you want to substract a given scalar from all coefficients, see Cwise::operator-().
See also
class CwiseBinaryOp, operator-=()
Returns
an expression of the sum of *this and other
Note
If you want to add a given scalar to all coefficients, see Cwise::operator+().
See also
class CwiseBinaryOp, operator+=()
Returns
an expression of a custom coefficient-wise operator func of *this and other

The template parameter CustomBinaryOp is the type of the functor of the custom operator (see class CwiseBinaryOp for an example)

Here is an example illustrating the use of custom functors:

Output:

See also
class CwiseBinaryOp, operator+(), operator-(), cwiseProduct()

§ blueNorm()

template<typename Derived >
NumTraits< typename internal::traits< Derived >::Scalar >::Real Eigen::MatrixBase< Derived >::blueNorm ( ) const
inline
Returns
the l2 norm of *this using the Blue's algorithm. A Portable Fortran Program to Find the Euclidean Norm of a Vector, ACM TOMS, Vol 4, Issue 1, 1978.

For architecture/scalar types without vectorization, this version is much faster than stableNorm(). Otherwise the stableNorm() is faster.

See also
norm(), stableNorm(), hypotNorm()

§ cast()

template<typename Derived>
template<typename NewType >
internal::cast_return_type<Derived,const CwiseUnaryOp<internal::scalar_cast_op<typename internal::traits<Derived>::Scalar, NewType>, const Derived> >::type Eigen::MatrixBase< Derived >::cast ( ) const
inline
Returns
an expression of *this with the Scalar type casted to NewScalar.

The template parameter NewScalar is the type we are casting the scalars to.

See also
class CwiseUnaryOp

§ colPivHouseholderQr()

template<typename Derived >
const ColPivHouseholderQR< typename MatrixBase< Derived >::PlainObject > Eigen::MatrixBase< Derived >::colPivHouseholderQr ( ) const
Returns
the column-pivoting Householder QR decomposition of *this.
See also
class ColPivHouseholderQR

§ computeInverseAndDetWithCheck()

template<typename Derived >
template<typename ResultType >
void Eigen::MatrixBase< Derived >::computeInverseAndDetWithCheck ( ResultType &  inverse,
typename ResultType::Scalar &  determinant,
bool &  invertible,
const RealScalar &  absDeterminantThreshold = NumTraits<Scalar>::dummy_precision() 
) const
inline

Computation of matrix inverse and determinant, with invertibility check.

This is only for fixed-size square matrices of size up to 4x4.

Parameters
inverseReference to the matrix in which to store the inverse.
determinantReference to the variable in which to store the determinant.
invertibleReference to the bool variable in which to store whether the matrix is invertible.
absDeterminantThresholdOptional parameter controlling the invertibility check. The matrix will be declared invertible if the absolute value of its determinant is greater than this threshold.

Example:

Output:

See also
inverse(), computeInverseWithCheck()

§ computeInverseWithCheck()

template<typename Derived >
template<typename ResultType >
void Eigen::MatrixBase< Derived >::computeInverseWithCheck ( ResultType &  inverse,
bool &  invertible,
const RealScalar &  absDeterminantThreshold = NumTraits<Scalar>::dummy_precision() 
) const
inline

Computation of matrix inverse, with invertibility check.

This is only for fixed-size square matrices of size up to 4x4.

Parameters
inverseReference to the matrix in which to store the inverse.
invertibleReference to the bool variable in which to store whether the matrix is invertible.
absDeterminantThresholdOptional parameter controlling the invertibility check. The matrix will be declared invertible if the absolute value of its determinant is greater than this threshold.

Example:

Output:

See also
inverse(), computeInverseAndDetWithCheck()

§ conjugate()

template<typename Derived>
ConjugateReturnType Eigen::MatrixBase< Derived >::conjugate ( ) const
inline
Returns
an expression of the complex conjugate of *this.
See also
adjoint()

§ cross()

template<typename Derived>
template<typename OtherDerived >
MatrixBase<Derived>::template cross_product_return_type<OtherDerived>::type Eigen::MatrixBase< Derived >::cross ( const MatrixBase< OtherDerived > &  other) const
inline

Returns
the cross product of *this and other

Here is a very good explanation of cross-product: http://xkcd.com/199/

See also
MatrixBase::cross3()

§ cross3()

template<typename Derived >
template<typename OtherDerived >
MatrixBase< Derived >::PlainObject Eigen::MatrixBase< Derived >::cross3 ( const MatrixBase< OtherDerived > &  other) const
inline

Returns
the cross product of *this and other using only the x, y, and z coefficients

The size of *this and other must be four. This function is especially useful when using 4D vectors instead of 3D ones to get advantage of SSE/AltiVec vectorization.

See also
MatrixBase::cross()

§ cwiseAbs()

template<typename Derived>
EIGEN_STRONG_INLINE const CwiseUnaryOp<internal::scalar_abs_op<Scalar>, const Derived> Eigen::MatrixBase< Derived >::cwiseAbs ( ) const
inline
Returns
an expression of the coefficient-wise absolute value of *this

Example:

Output:

See also
cwiseAbs2()

§ cwiseAbs2()

template<typename Derived>
EIGEN_STRONG_INLINE const CwiseUnaryOp<internal::scalar_abs2_op<Scalar>, const Derived> Eigen::MatrixBase< Derived >::cwiseAbs2 ( ) const
inline
Returns
an expression of the coefficient-wise squared absolute value of *this

Example:

Output:

See also
cwiseAbs()

§ cwiseEqual() [1/2]

template<typename Derived>
template<typename OtherDerived >
const CwiseBinaryOp<std::equal_to<Scalar>, const Derived, const OtherDerived> Eigen::MatrixBase< Derived >::cwiseEqual ( const EIGEN_CURRENT_STORAGE_BASE_CLASS< OtherDerived > &  other) const
inline
Returns
an expression of the coefficient-wise == operator of *this and other
Warning
this performs an exact comparison, which is generally a bad idea with floating-point types. In order to check for equality between two vectors or matrices with floating-point coefficients, it is generally a far better idea to use a fuzzy comparison as provided by isApprox() and isMuchSmallerThan().

Example:

Output:

See also
cwiseNotEqual(), isApprox(), isMuchSmallerThan()

§ cwiseEqual() [2/2]

template<typename Derived>
const CwiseScalarEqualReturnType Eigen::MatrixBase< Derived >::cwiseEqual ( const Scalar &  s) const
inline
Returns
an expression of the coefficient-wise == operator of *this and a scalar s
Warning
this performs an exact comparison, which is generally a bad idea with floating-point types. In order to check for equality between two vectors or matrices with floating-point coefficients, it is generally a far better idea to use a fuzzy comparison as provided by isApprox() and isMuchSmallerThan().
See also
cwiseEqual(const MatrixBase<OtherDerived> &) const

§ cwiseInverse()

template<typename Derived>
const CwiseUnaryOp<internal::scalar_inverse_op<Scalar>, const Derived> Eigen::MatrixBase< Derived >::cwiseInverse ( ) const
inline
Returns
an expression of the coefficient-wise inverse of *this.

Example:

Output:

See also
cwiseProduct()

§ cwiseMax() [1/2]

template<typename Derived>
template<typename OtherDerived >
EIGEN_STRONG_INLINE const CwiseBinaryOp<internal::scalar_max_op<Scalar>, const Derived, const OtherDerived> Eigen::MatrixBase< Derived >::cwiseMax ( const EIGEN_CURRENT_STORAGE_BASE_CLASS< OtherDerived > &  other) const
inline
Returns
an expression of the coefficient-wise max of *this and other

Example:

Output:

See also
class CwiseBinaryOp, min()

§ cwiseMax() [2/2]

template<typename Derived>
EIGEN_STRONG_INLINE const CwiseBinaryOp<internal::scalar_max_op<Scalar>, const Derived, const ConstantReturnType> Eigen::MatrixBase< Derived >::cwiseMax ( const Scalar &  other) const
inline
Returns
an expression of the coefficient-wise max of *this and scalar other
See also
class CwiseBinaryOp, min()

§ cwiseMin() [1/2]

template<typename Derived>
template<typename OtherDerived >
EIGEN_STRONG_INLINE const CwiseBinaryOp<internal::scalar_min_op<Scalar>, const Derived, const OtherDerived> Eigen::MatrixBase< Derived >::cwiseMin ( const EIGEN_CURRENT_STORAGE_BASE_CLASS< OtherDerived > &  other) const
inline
Returns
an expression of the coefficient-wise min of *this and other

Example:

Output:

See also
class CwiseBinaryOp, max()

§ cwiseMin() [2/2]

template<typename Derived>
EIGEN_STRONG_INLINE const CwiseBinaryOp<internal::scalar_min_op<Scalar>, const Derived, const ConstantReturnType> Eigen::MatrixBase< Derived >::cwiseMin ( const Scalar &  other) const
inline
Returns
an expression of the coefficient-wise min of *this and scalar other
See also
class CwiseBinaryOp, min()

§ cwiseNotEqual()

template<typename Derived>
template<typename OtherDerived >
const CwiseBinaryOp<std::not_equal_to<Scalar>, const Derived, const OtherDerived> Eigen::MatrixBase< Derived >::cwiseNotEqual ( const EIGEN_CURRENT_STORAGE_BASE_CLASS< OtherDerived > &  other) const
inline
Returns
an expression of the coefficient-wise != operator of *this and other
Warning
this performs an exact comparison, which is generally a bad idea with floating-point types. In order to check for equality between two vectors or matrices with floating-point coefficients, it is generally a far better idea to use a fuzzy comparison as provided by isApprox() and isMuchSmallerThan().

Example:

Output:

See also
cwiseEqual(), isApprox(), isMuchSmallerThan()

§ cwiseQuotient()

template<typename Derived>
template<typename OtherDerived >
EIGEN_STRONG_INLINE const CwiseBinaryOp<internal::scalar_quotient_op<Scalar>, const Derived, const OtherDerived> Eigen::MatrixBase< Derived >::cwiseQuotient ( const EIGEN_CURRENT_STORAGE_BASE_CLASS< OtherDerived > &  other) const
inline
Returns
an expression of the coefficient-wise quotient of *this and other

Example:

Output:

See also
class CwiseBinaryOp, cwiseProduct(), cwiseInverse()

§ cwiseSqrt()

template<typename Derived>
const CwiseUnaryOp<internal::scalar_sqrt_op<Scalar>, const Derived> Eigen::MatrixBase< Derived >::cwiseSqrt ( ) const
inline
Returns
an expression of the coefficient-wise square root of *this.

Example:

Output:

See also
cwisePow(), cwiseSquare()

§ determinant()

template<typename Derived >
internal::traits< Derived >::Scalar Eigen::MatrixBase< Derived >::determinant ( ) const
inline

Returns
the determinant of this matrix

§ diagonal() [1/4]

template<typename Derived >
MatrixBase< Derived >::template DiagonalIndexReturnType< Index >::Type Eigen::MatrixBase< Derived >::diagonal ( )
inline
Returns
an expression of the main diagonal of the matrix *this

*this is not required to be square.

Example:

Output:

See also
class Diagonal
Returns
an expression of the DiagIndex-th sub or super diagonal of the matrix *this

*this is not required to be square.

The template parameter DiagIndex represent a super diagonal if DiagIndex > 0 and a sub diagonal otherwise. DiagIndex == 0 is equivalent to the main diagonal.

Example:

Output:

See also
MatrixBase::diagonal(), class Diagonal

§ diagonal() [2/4]

template<typename Derived >
MatrixBase< Derived >::template ConstDiagonalIndexReturnType< Index >::Type Eigen::MatrixBase< Derived >::diagonal ( ) const
inline

This is the const version of diagonal().

This is the const version of diagonal<int>().

§ diagonal() [3/4]

template<typename Derived >
MatrixBase< Derived >::DiagonalDynamicIndexReturnType Eigen::MatrixBase< Derived >::diagonal ( Index  index)
inline
Returns
an expression of the DiagIndex-th sub or super diagonal of the matrix *this

*this is not required to be square.

The template parameter DiagIndex represent a super diagonal if DiagIndex > 0 and a sub diagonal otherwise. DiagIndex == 0 is equivalent to the main diagonal.

Example:

Output:

See also
MatrixBase::diagonal(), class Diagonal

§ diagonal() [4/4]

template<typename Derived >
MatrixBase< Derived >::ConstDiagonalDynamicIndexReturnType Eigen::MatrixBase< Derived >::diagonal ( Index  index) const
inline

This is the const version of diagonal(Index).

§ diagonalSize()

template<typename Derived>
Index Eigen::MatrixBase< Derived >::diagonalSize ( ) const
inline
Returns
the size of the main diagonal, which is min(rows(),cols()).
See also
rows(), cols(), SizeAtCompileTime.

§ dot()

template<typename Derived >
template<typename OtherDerived >
internal::scalar_product_traits< typename internal::traits< Derived >::Scalar, typename internal::traits< OtherDerived >::Scalar >::ReturnType Eigen::MatrixBase< Derived >::dot ( const MatrixBase< OtherDerived > &  other) const
Returns
the dot product of *this with other.
Note
If the scalar type is complex numbers, then this function returns the hermitian (sesquilinear) dot product, conjugate-linear in the first variable and linear in the second variable.
See also
squaredNorm(), norm()

§ EIGEN_CWISE_PRODUCT_RETURN_TYPE()

template<typename Derived>
template<typename OtherDerived >
EIGEN_STRONG_INLINE const Eigen::MatrixBase< Derived >::EIGEN_CWISE_PRODUCT_RETURN_TYPE ( Derived  ,
OtherDerived   
) const
inline
Returns
an expression of the Schur product (coefficient wise product) of *this and other

Example:

Output:

See also
class CwiseBinaryOp, cwiseAbs2

§ eigenvalues()

template<typename Derived >
MatrixBase< Derived >::EigenvaluesReturnType Eigen::MatrixBase< Derived >::eigenvalues ( ) const
inline

Computes the eigenvalues of a matrix.

Returns
Column vector containing the eigenvalues.

This function computes the eigenvalues with the help of the EigenSolver class (for real matrices) or the ComplexEigenSolver class (for complex matrices).

The eigenvalues are repeated according to their algebraic multiplicity, so there are as many eigenvalues as rows in the matrix.

The SelfAdjointView class provides a better algorithm for selfadjoint matrices.

Example:

Output:

See also
EigenSolver::eigenvalues(), ComplexEigenSolver::eigenvalues(), SelfAdjointView::eigenvalues()

§ forceAlignedAccess() [1/2]

template<typename Derived >
const ForceAlignedAccess< Derived > Eigen::MatrixBase< Derived >::forceAlignedAccess ( ) const
inline
Returns
an expression of *this with forced aligned access
See also
forceAlignedAccessIf(),class ForceAlignedAccess

§ forceAlignedAccess() [2/2]

template<typename Derived >
ForceAlignedAccess< Derived > Eigen::MatrixBase< Derived >::forceAlignedAccess ( )
inline
Returns
an expression of *this with forced aligned access
See also
forceAlignedAccessIf(), class ForceAlignedAccess

§ forceAlignedAccessIf() [1/2]

template<typename Derived >
template<bool Enable>
internal::add_const_on_value_type< typename internal::conditional< Enable, ForceAlignedAccess< Derived >, Derived & >::type >::type Eigen::MatrixBase< Derived >::forceAlignedAccessIf ( ) const
inline
Returns
an expression of *this with forced aligned access if Enable is true.
See also
forceAlignedAccess(), class ForceAlignedAccess

§ forceAlignedAccessIf() [2/2]

template<typename Derived >
template<bool Enable>
internal::conditional< Enable, ForceAlignedAccess< Derived >, Derived & >::type Eigen::MatrixBase< Derived >::forceAlignedAccessIf ( )
inline
Returns
an expression of *this with forced aligned access if Enable is true.
See also
forceAlignedAccess(), class ForceAlignedAccess

§ fullPivHouseholderQr()

template<typename Derived >
const FullPivHouseholderQR< typename MatrixBase< Derived >::PlainObject > Eigen::MatrixBase< Derived >::fullPivHouseholderQr ( ) const
Returns
the full-pivoting Householder QR decomposition of *this.
See also
class FullPivHouseholderQR

§ fullPivLu()

template<typename Derived >
const FullPivLU< typename MatrixBase< Derived >::PlainObject > Eigen::MatrixBase< Derived >::fullPivLu ( ) const
inline

Returns
the full-pivoting LU decomposition of *this.
See also
class FullPivLU

§ hnormalized()

template<typename Derived >
const MatrixBase< Derived >::HNormalizedReturnType Eigen::MatrixBase< Derived >::hnormalized ( ) const
inline

Returns
an expression of the homogeneous normalized vector of *this

Example:

Output:

See also
VectorwiseOp::hnormalized()

§ householderQr()

template<typename Derived >
const HouseholderQR< typename MatrixBase< Derived >::PlainObject > Eigen::MatrixBase< Derived >::householderQr ( ) const
Returns
the Householder QR decomposition of *this.
See also
class HouseholderQR

§ hypotNorm()

template<typename Derived >
NumTraits< typename internal::traits< Derived >::Scalar >::Real Eigen::MatrixBase< Derived >::hypotNorm ( ) const
inline
Returns
the l2 norm of *this avoiding undeflow and overflow. This version use a concatenation of hypot() calls, and it is very slow.
See also
norm(), stableNorm()

§ Identity() [1/2]

template<typename Derived >
EIGEN_STRONG_INLINE const MatrixBase< Derived >::IdentityReturnType Eigen::MatrixBase< Derived >::Identity ( )
static
Returns
an expression of the identity matrix (not necessarily square).

This variant is only for fixed-size MatrixBase types. For dynamic-size types, you need to use the variant taking size arguments.

Example:

Output:

See also
Identity(Index,Index), setIdentity(), isIdentity()

§ Identity() [2/2]

template<typename Derived >
EIGEN_STRONG_INLINE const MatrixBase< Derived >::IdentityReturnType Eigen::MatrixBase< Derived >::Identity ( Index  nbRows,
Index  nbCols 
)
static
Returns
an expression of the identity matrix (not necessarily square).

The parameters nbRows and nbCols are the number of rows and of columns of the returned matrix. Must be compatible with this MatrixBase type.

This variant is meant to be used for dynamic-size matrix types. For fixed-size types, it is redundant to pass rows and cols as arguments, so Identity() should be used instead.

Example:

Output:

See also
Identity(), setIdentity(), isIdentity()

§ imag() [1/2]

template<typename Derived>
const ImagReturnType Eigen::MatrixBase< Derived >::imag ( ) const
inline
Returns
an read-only expression of the imaginary part of *this.
See also
real()

§ imag() [2/2]

template<typename Derived>
NonConstImagReturnType Eigen::MatrixBase< Derived >::imag ( )
inline
Returns
a non const expression of the imaginary part of *this.
See also
real()

§ inverse()

template<typename Derived >
const internal::inverse_impl< Derived > Eigen::MatrixBase< Derived >::inverse ( ) const
inline

Returns
the matrix inverse of this matrix.

For small fixed sizes up to 4x4, this method uses cofactors. In the general case, this method uses class PartialPivLU.

Note
This matrix must be invertible, otherwise the result is undefined. If you need an invertibility check, do the following: Example:
Output:
See also
computeInverseAndDetWithCheck()

§ isDiagonal()

template<typename Derived >
bool Eigen::MatrixBase< Derived >::isDiagonal ( const RealScalar &  prec = NumTraits<Scalar>::dummy_precision()) const
Returns
true if *this is approximately equal to a diagonal matrix, within the precision given by prec.

Example:

Output:

See also
asDiagonal()

§ isIdentity()

template<typename Derived >
bool Eigen::MatrixBase< Derived >::isIdentity ( const RealScalar &  prec = NumTraits<Scalar>::dummy_precision()) const
Returns
true if *this is approximately equal to the identity matrix (not necessarily square), within the precision given by prec.

Example:

Output:

See also
class CwiseNullaryOp, Identity(), Identity(Index,Index), setIdentity()

§ isLowerTriangular()

template<typename Derived >
bool Eigen::MatrixBase< Derived >::isLowerTriangular ( const RealScalar &  prec = NumTraits<Scalar>::dummy_precision()) const
Returns
true if *this is approximately equal to a lower triangular matrix, within the precision given by prec.
See also
isUpperTriangular()

§ isOrthogonal()

template<typename Derived >
template<typename OtherDerived >
bool Eigen::MatrixBase< Derived >::isOrthogonal ( const MatrixBase< OtherDerived > &  other,
const RealScalar &  prec = NumTraits<Scalar>::dummy_precision() 
) const
Returns
true if *this is approximately orthogonal to other, within the precision given by prec.

Example:

Output:

 

§ isUnitary()

template<typename Derived >
bool Eigen::MatrixBase< Derived >::isUnitary ( const RealScalar &  prec = NumTraits<Scalar>::dummy_precision()) const
Returns
true if *this is approximately an unitary matrix, within the precision given by prec. In the case where the Scalar type is real numbers, a unitary matrix is an orthogonal matrix, whence the name.
Note
This can be used to check whether a family of vectors forms an orthonormal basis. Indeed, m.isUnitary() returns true if and only if the columns (equivalently, the rows) of m form an orthonormal basis.

Example:

Output:

 

§ isUpperTriangular()

template<typename Derived >
bool Eigen::MatrixBase< Derived >::isUpperTriangular ( const RealScalar &  prec = NumTraits<Scalar>::dummy_precision()) const
Returns
true if *this is approximately equal to an upper triangular matrix, within the precision given by prec.
See also
isLowerTriangular()

§ jacobiSvd()

template<typename Derived >
JacobiSVD< typename MatrixBase< Derived >::PlainObject > Eigen::MatrixBase< Derived >::jacobiSvd ( unsigned int  computationOptions = 0) const

Returns
the singular value decomposition of *this computed by two-sided Jacobi transformations.
See also
class JacobiSVD

§ lazyProduct()

template<typename Derived >
template<typename OtherDerived >
const LazyProductReturnType< Derived, OtherDerived >::Type Eigen::MatrixBase< Derived >::lazyProduct ( const MatrixBase< OtherDerived > &  other) const
Returns
an expression of the matrix product of *this and other without implicit evaluation.

The returned product will behave like any other expressions: the coefficients of the product will be computed once at a time as requested. This might be useful in some extremely rare cases when only a small and no coherent fraction of the result's coefficients have to be computed.

Warning
This version of the matrix product can be much much slower. So use it only if you know what you are doing and that you measured a true speed improvement.
See also
operator*(const MatrixBase&)

§ ldlt()

template<typename Derived >
const LDLT< typename MatrixBase< Derived >::PlainObject > Eigen::MatrixBase< Derived >::ldlt ( ) const
inline

Returns
the Cholesky decomposition with full pivoting without square root of *this

§ llt()

template<typename Derived >
const LLT< typename MatrixBase< Derived >::PlainObject > Eigen::MatrixBase< Derived >::llt ( ) const
inline

Returns
the LLT decomposition of *this

§ lpNorm()

template<typename Derived>
template<int p>
NumTraits<typename internal::traits<Derived>::Scalar>::Real Eigen::MatrixBase< Derived >::lpNorm ( ) const
inline
Returns
the \( \ell^p \) norm of *this, that is, returns the p-th root of the sum of the p-th powers of the absolute values of the coefficients of *this. If p is the special value Eigen::Infinity, this function returns the \( \ell^\infty \) norm, that is the maximum of the absolute values of the coefficients of *this.
See also
norm()

§ makeHouseholder()

template<typename Derived >
template<typename EssentialPart >
void Eigen::MatrixBase< Derived >::makeHouseholder ( EssentialPart &  essential,
Scalar &  tau,
RealScalar &  beta 
) const

Computes the elementary reflector H such that: \( H *this = [ beta 0 ... 0]^T \) where the transformation H is: \( H = I - tau v v^*\) and the vector v is: \( v^T = [1 essential^T] \).

On output:

Parameters
essentialthe essential part of the vector v
tauthe scaling factor of the Householder transformation
betathe result of H * *this
See also
MatrixBase::makeHouseholderInPlace(), MatrixBase::applyHouseholderOnTheLeft(), MatrixBase::applyHouseholderOnTheRight()

§ makeHouseholderInPlace()

template<typename Derived >
void Eigen::MatrixBase< Derived >::makeHouseholderInPlace ( Scalar &  tau,
RealScalar &  beta 
)

Computes the elementary reflector H such that: \( H *this = [ beta 0 ... 0]^T \) where the transformation H is: \( H = I - tau v v^*\) and the vector v is: \( v^T = [1 essential^T] \).

The essential part of the vector v is stored in *this.

On output:

Parameters
tauthe scaling factor of the Householder transformation
betathe result of H * *this
See also
MatrixBase::makeHouseholder(), MatrixBase::applyHouseholderOnTheLeft(), MatrixBase::applyHouseholderOnTheRight()

§ noalias()

template<typename Derived >
NoAlias< Derived, MatrixBase > Eigen::MatrixBase< Derived >::noalias ( )
Returns
a pseudo expression of *this with an operator= assuming no aliasing between *this and the source expression.

More precisely, noalias() allows to bypass the EvalBeforeAssignBit flag. Currently, even though several expressions may alias, only product expressions have this flag. Therefore, noalias() is only usefull when the source expression contains a matrix product.

Here are some examples where noalias is usefull:

D.noalias() = A * B;
D.noalias() += A.transpose() * B;
D.noalias() -= 2 * A * B.adjoint();

On the other hand the following example will lead to a wrong result:

A.noalias() = A * B;

because the result matrix A is also an operand of the matrix product. Therefore, there is no alternative than evaluating A * B in a temporary, that is the default behavior when you write:

A = A * B;
See also
class NoAlias

§ norm()

template<typename Derived >
NumTraits< typename internal::traits< Derived >::Scalar >::Real Eigen::MatrixBase< Derived >::norm ( ) const
inline
Returns
, for vectors, the l2 norm of *this, and for matrices the Frobenius norm. In both cases, it consists in the square root of the sum of the square of all the matrix entries. For vectors, this is also equals to the square root of the dot product of *this with itself.
See also
dot(), squaredNorm()

§ normalize()

template<typename Derived >
void Eigen::MatrixBase< Derived >::normalize ( )
inline

Normalizes the vector, i.e.

divides it by its own norm.

See also
norm(), normalized()

§ normalized()

template<typename Derived >
const MatrixBase< Derived >::PlainObject Eigen::MatrixBase< Derived >::normalized ( ) const
inline
Returns
an expression of the quotient of *this by its own norm.
See also
norm(), normalize()

§ operator!=()

template<typename Derived>
template<typename OtherDerived >
bool Eigen::MatrixBase< Derived >::operator!= ( const MatrixBase< OtherDerived > &  other) const
inline
Returns
true if at least one pair of coefficients of *this and other are not exactly equal to each other.
Warning
When using floating point scalar values you probably should rather use a fuzzy comparison such as isApprox()
See also
isApprox(), operator==

§ operator*() [1/3]

template<typename Derived>
const ScalarMultipleReturnType Eigen::MatrixBase< Derived >::operator* ( const Scalar &  scalar) const
inline
Returns
an expression of *this scaled by the scalar factor scalar

§ operator*() [2/3]

template<typename Derived >
template<typename OtherDerived >
const ProductReturnType< Derived, OtherDerived >::Type Eigen::MatrixBase< Derived >::operator* ( const MatrixBase< OtherDerived > &  other) const
inline
Returns
the matrix product of *this and other.
Note
If instead of the matrix product you want the coefficient-wise product, see Cwise::operator*().
See also
lazyProduct(), operator*=(const MatrixBase&), Cwise::operator*()

§ operator*() [3/3]

template<typename Derived >
template<typename DiagonalDerived >
const DiagonalProduct< Derived, DiagonalDerived, OnTheRight > Eigen::MatrixBase< Derived >::operator* ( const DiagonalBase< DiagonalDerived > &  a_diagonal) const
inline
Returns
the diagonal matrix product of *this by the diagonal matrix diagonal.

§ operator*=()

template<typename Derived >
template<typename OtherDerived >
Derived & Eigen::MatrixBase< Derived >::operator*= ( const EigenBase< OtherDerived > &  other)
inline

replaces *this by *this * other.

Returns
a reference to *this

Example:

Output:

 

§ operator+=()

template<typename Derived>
template<typename OtherDerived >
EIGEN_STRONG_INLINE Derived& Eigen::MatrixBase< Derived >::operator+= ( const MatrixBase< OtherDerived > &  other)

replaces *this by *this + other.

Returns
a reference to *this

§ operator-()

template<typename Derived>
const CwiseUnaryOp<internal::scalar_opposite_op<typename internal::traits<Derived>::Scalar>, const Derived> Eigen::MatrixBase< Derived >::operator- ( ) const
inline
Returns
an expression of the opposite of *this

§ operator-=()

template<typename Derived>
template<typename OtherDerived >
EIGEN_STRONG_INLINE Derived& Eigen::MatrixBase< Derived >::operator-= ( const MatrixBase< OtherDerived > &  other)

replaces *this by *this - other.

Returns
a reference to *this

§ operator/()

template<typename Derived>
const CwiseUnaryOp<internal::scalar_quotient1_op<typename internal::traits<Derived>::Scalar>, const Derived> Eigen::MatrixBase< Derived >::operator/ ( const Scalar &  scalar) const
inline
Returns
an expression of *this divided by the scalar value scalar

§ operator==()

template<typename Derived>
template<typename OtherDerived >
bool Eigen::MatrixBase< Derived >::operator== ( const MatrixBase< OtherDerived > &  other) const
inline
Returns
true if each coefficients of *this and other are all exactly equal.
Warning
When using floating point scalar values you probably should rather use a fuzzy comparison such as isApprox()
See also
isApprox(), operator!=

§ operatorNorm()

template<typename Derived >
MatrixBase< Derived >::RealScalar Eigen::MatrixBase< Derived >::operatorNorm ( ) const
inline

Computes the L2 operator norm.

Returns
Operator norm of the matrix.

This function computes the L2 operator norm of a matrix, which is also known as the spectral norm. The norm of a matrix \( A \) is defined to be

\[ \|A\|_2 = \max_x \frac{\|Ax\|_2}{\|x\|_2} \]

where the maximum is over all vectors and the norm on the right is the Euclidean vector norm. The norm equals the largest singular value, which is the square root of the largest eigenvalue of the positive semi-definite matrix \( A^*A \).

The current implementation uses the eigenvalues of \( A^*A \), as computed by SelfAdjointView::eigenvalues(), to compute the operator norm of a matrix. The SelfAdjointView class provides a better algorithm for selfadjoint matrices.

Example:

Output:

See also
SelfAdjointView::eigenvalues(), SelfAdjointView::operatorNorm()

§ partialPivLu()

template<typename Derived >
const PartialPivLU< typename MatrixBase< Derived >::PlainObject > Eigen::MatrixBase< Derived >::partialPivLu ( ) const
inline

Returns
the partial-pivoting LU decomposition of *this.
See also
class PartialPivLU

§ real() [1/2]

template<typename Derived>
RealReturnType Eigen::MatrixBase< Derived >::real ( ) const
inline
Returns
a read-only expression of the real part of *this.
See also
imag()

§ real() [2/2]

template<typename Derived>
NonConstRealReturnType Eigen::MatrixBase< Derived >::real ( )
inline
Returns
a non const expression of the real part of *this.
See also
imag()

§ setIdentity() [1/2]

template<typename Derived >
EIGEN_STRONG_INLINE Derived & Eigen::MatrixBase< Derived >::setIdentity ( )

Writes the identity expression (not necessarily square) into *this.

Example:

Output:

See also
class CwiseNullaryOp, Identity(), Identity(Index,Index), isIdentity()

§ setIdentity() [2/2]

template<typename Derived >
EIGEN_STRONG_INLINE Derived & Eigen::MatrixBase< Derived >::setIdentity ( Index  nbRows,
Index  nbCols 
)

Resizes to the given size, and writes the identity expression (not necessarily square) into *this.

Parameters
nbRowsthe new number of rows
nbColsthe new number of columns

Example:

Output:

See also
MatrixBase::setIdentity(), class CwiseNullaryOp, MatrixBase::Identity()

§ squaredNorm()

template<typename Derived >
EIGEN_STRONG_INLINE NumTraits< typename internal::traits< Derived >::Scalar >::Real Eigen::MatrixBase< Derived >::squaredNorm ( ) const
Returns
, for vectors, the squared l2 norm of *this, and for matrices the Frobenius norm. In both cases, it consists in the sum of the square of all the matrix entries. For vectors, this is also equals to the dot product of *this with itself.
See also
dot(), norm()

§ stableNorm()

template<typename Derived >
NumTraits< typename internal::traits< Derived >::Scalar >::Real Eigen::MatrixBase< Derived >::stableNorm ( ) const
inline
Returns
the l2 norm of *this avoiding underflow and overflow. This version use a blockwise two passes algorithm: 1 - find the absolute largest coefficient s 2 - compute \( s \Vert \frac{*this}{s} \Vert \) in a standard way

For architecture/scalar types supporting vectorization, this version is faster than blueNorm(). Otherwise the blueNorm() is much faster.

See also
norm(), blueNorm(), hypotNorm()

§ trace()

template<typename Derived >
EIGEN_STRONG_INLINE internal::traits< Derived >::Scalar Eigen::MatrixBase< Derived >::trace ( ) const
Returns
the trace of *this, i.e. the sum of the coefficients on the main diagonal.

*this can be any matrix, not necessarily square.

See also
diagonal(), sum()

§ triangularView()

template<typename Derived>
template<unsigned int Mode>
MatrixBase<Derived>::template TriangularViewReturnType<Mode>::Type Eigen::MatrixBase< Derived >::triangularView ( )
Returns
an expression of a triangular view extracted from the current matrix

The parameter Mode can have the following values: Upper, StrictlyUpper, UnitUpper, Lower, StrictlyLower, UnitLower.

Example:

Output:

See also
class TriangularView

§ unaryExpr()

template<typename Derived>
template<typename CustomUnaryOp >
const CwiseUnaryOp<CustomUnaryOp, const Derived> Eigen::MatrixBase< Derived >::unaryExpr ( const CustomUnaryOp &  func = CustomUnaryOp()) const
inline

Apply a unary operator coefficient-wise.

Parameters
[in]funcFunctor implementing the unary operator
Template Parameters
CustomUnaryOpType of func
Returns
An expression of a custom coefficient-wise unary operator func of *this

The function ptr_fun() from the C++ standard library can be used to make functors out of normal functions.

Example:

Output:

Genuine functors allow for more possibilities, for instance it may contain a state.

Example:

Output:

See also
class CwiseUnaryOp, class CwiseBinaryOp

§ unaryViewExpr()

template<typename Derived>
template<typename CustomViewOp >
const CwiseUnaryView<CustomViewOp, const Derived> Eigen::MatrixBase< Derived >::unaryViewExpr ( const CustomViewOp &  func = CustomViewOp()) const
inline
Returns
an expression of a custom coefficient-wise unary operator func of *this

The template parameter CustomUnaryOp is the type of the functor of the custom unary operator.

Example:

Output:

See also
class CwiseUnaryOp, class CwiseBinaryOp

§ Unit() [1/2]

template<typename Derived >
EIGEN_STRONG_INLINE const MatrixBase< Derived >::BasisReturnType Eigen::MatrixBase< Derived >::Unit ( Index  newSize,
Index  i 
)
static
Returns
an expression of the i-th unit (basis) vector.
See also
MatrixBase::Unit(Index), MatrixBase::UnitX(), MatrixBase::UnitY(), MatrixBase::UnitZ(), MatrixBase::UnitW()

§ Unit() [2/2]

template<typename Derived >
EIGEN_STRONG_INLINE const MatrixBase< Derived >::BasisReturnType Eigen::MatrixBase< Derived >::Unit ( Index  i)
static
Returns
an expression of the i-th unit (basis) vector.

This variant is for fixed-size vector only.

See also
MatrixBase::Unit(Index,Index), MatrixBase::UnitX(), MatrixBase::UnitY(), MatrixBase::UnitZ(), MatrixBase::UnitW()

§ unitOrthogonal()

template<typename Derived >
MatrixBase< Derived >::PlainObject Eigen::MatrixBase< Derived >::unitOrthogonal ( void  ) const
Returns
a unit vector which is orthogonal to *this

The size of *this must be at least 2. If the size is exactly 2, then the returned vector is a counter clock wise rotation of *this, i.e., (-y,x).normalized().

See also
cross()

§ UnitW()

template<typename Derived >
EIGEN_STRONG_INLINE const MatrixBase< Derived >::BasisReturnType Eigen::MatrixBase< Derived >::UnitW ( )
static
Returns
an expression of the W axis unit vector (0,0,0,1)
See also
MatrixBase::Unit(Index,Index), MatrixBase::Unit(Index), MatrixBase::UnitY(), MatrixBase::UnitZ(), MatrixBase::UnitW()

§ UnitX()

template<typename Derived >
EIGEN_STRONG_INLINE const MatrixBase< Derived >::BasisReturnType Eigen::MatrixBase< Derived >::UnitX ( )
static
Returns
an expression of the X axis unit vector (1{,0}^*)
See also
MatrixBase::Unit(Index,Index), MatrixBase::Unit(Index), MatrixBase::UnitY(), MatrixBase::UnitZ(), MatrixBase::UnitW()

§ UnitY()

template<typename Derived >
EIGEN_STRONG_INLINE const MatrixBase< Derived >::BasisReturnType Eigen::MatrixBase< Derived >::UnitY ( )
static
Returns
an expression of the Y axis unit vector (0,1{,0}^*)
See also
MatrixBase::Unit(Index,Index), MatrixBase::Unit(Index), MatrixBase::UnitY(), MatrixBase::UnitZ(), MatrixBase::UnitW()

§ UnitZ()

template<typename Derived >
EIGEN_STRONG_INLINE const MatrixBase< Derived >::BasisReturnType Eigen::MatrixBase< Derived >::UnitZ ( )
static
Returns
an expression of the Z axis unit vector (0,0,1{,0}^*)
See also
MatrixBase::Unit(Index,Index), MatrixBase::Unit(Index), MatrixBase::UnitY(), MatrixBase::UnitZ(), MatrixBase::UnitW()

The documentation for this class was generated from the following files: