10 #ifndef EIGEN_MATRIX_POWER 11 #define EIGEN_MATRIX_POWER 17 template<
typename MatrixType>
21 typedef typename MatrixType::RealScalar RealScalar;
22 typedef typename MatrixType::Index Index;
27 template<
typename ResultType>
28 inline void evalTo(ResultType& res)
const 29 { m_pow.compute(res, m_p); }
31 Index rows()
const {
return m_pow.rows(); }
32 Index cols()
const {
return m_pow.cols(); }
40 template<
typename MatrixType>
45 RowsAtCompileTime = MatrixType::RowsAtCompileTime,
46 MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime
49 typedef typename MatrixType::RealScalar RealScalar;
50 typedef std::complex<RealScalar> ComplexScalar;
51 typedef typename MatrixType::Index Index;
58 void compute2x2(
MatrixType& res, RealScalar p)
const;
60 static int getPadeDegree(
float normIminusT);
61 static int getPadeDegree(
double normIminusT);
62 static int getPadeDegree(
long double normIminusT);
63 static ComplexScalar computeSuperDiag(
const ComplexScalar&,
const ComplexScalar&, RealScalar p);
64 static RealScalar computeSuperDiag(RealScalar, RealScalar, RealScalar p);
71 template<
typename MatrixType>
74 { eigen_assert(T.rows() == T.cols()); }
76 template<
typename MatrixType>
84 res(0,0) = std::pow(m_A(0,0), m_p);
94 template<
typename MatrixType>
98 res = (m_p-degree) / ((i-1)<<1) * IminusT;
100 res = (MatrixType::Identity(IminusT.rows(), IminusT.cols()) + res).template triangularView<Upper>()
101 .solve((i==1 ? -m_p : i&1 ? (-m_p-(i>>1))/(i<<1) : (m_p-(i>>1))/((i-1)<<1)) * IminusT).eval();
103 res += MatrixType::Identity(IminusT.rows(), IminusT.cols());
107 template<
typename MatrixType>
113 res.coeffRef(0,0) = pow(m_A.coeff(0,0), p);
115 for (Index i=1; i < m_A.cols(); ++i) {
116 res.coeffRef(i,i) = pow(m_A.coeff(i,i), p);
117 if (m_A.coeff(i-1,i-1) == m_A.coeff(i,i))
118 res.coeffRef(i-1,i) = p * pow(m_A.coeff(i,i), p-1);
119 else if (2*abs(m_A.coeff(i-1,i-1)) < abs(m_A.coeff(i,i)) || 2*abs(m_A.coeff(i,i)) < abs(m_A.coeff(i-1,i-1)))
120 res.coeffRef(i-1,i) = (res.coeff(i,i)-res.coeff(i-1,i-1)) / (m_A.coeff(i,i)-m_A.coeff(i-1,i-1));
122 res.coeffRef(i-1,i) = computeSuperDiag(m_A.coeff(i,i), m_A.coeff(i-1,i-1), p);
123 res.coeffRef(i-1,i) *= m_A.coeff(i-1,i);
127 template<
typename MatrixType>
130 const int digits = std::numeric_limits<RealScalar>::digits;
131 const RealScalar maxNormForPade = digits <= 24? 4.3386528e-1f:
132 digits <= 53? 2.789358995219730e-1:
133 digits <= 64? 2.4471944416607995472e-1L:
134 digits <= 106? 1.1016843812851143391275867258512e-1L:
135 9.134603732914548552537150753385375e-2L;
136 MatrixType IminusT, sqrtT, T = m_A.template triangularView<Upper>();
137 RealScalar normIminusT;
138 int degree, degree2, numberOfSquareRoots = 0;
139 bool hasExtraSquareRoot =
false;
154 for (Index i=0; i < m_A.cols(); ++i)
155 eigen_assert(m_A(i,i) != RealScalar(0));
158 IminusT = MatrixType::Identity(m_A.rows(), m_A.cols()) - T;
159 normIminusT = IminusT.cwiseAbs().colwise().sum().maxCoeff();
160 if (normIminusT < maxNormForPade) {
161 degree = getPadeDegree(normIminusT);
162 degree2 = getPadeDegree(normIminusT/2);
163 if (degree - degree2 <= 1 || hasExtraSquareRoot)
165 hasExtraSquareRoot =
true;
168 T = sqrtT.template triangularView<Upper>();
169 ++numberOfSquareRoots;
171 computePade(degree, IminusT, res);
173 for (; numberOfSquareRoots; --numberOfSquareRoots) {
174 compute2x2(res, std::ldexp(m_p, -numberOfSquareRoots));
175 res = res.template triangularView<Upper>() * res;
177 compute2x2(res, m_p);
180 template<
typename MatrixType>
183 const float maxNormForPade[] = { 2.8064004e-1f , 4.3386528e-1f };
185 for (; degree <= 4; ++degree)
186 if (normIminusT <= maxNormForPade[degree - 3])
191 template<
typename MatrixType>
194 const double maxNormForPade[] = { 1.884160592658218e-2 , 6.038881904059573e-2, 1.239917516308172e-1,
195 1.999045567181744e-1, 2.789358995219730e-1 };
197 for (; degree <= 7; ++degree)
198 if (normIminusT <= maxNormForPade[degree - 3])
203 template<
typename MatrixType>
206 #if LDBL_MANT_DIG == 53 207 const int maxPadeDegree = 7;
208 const double maxNormForPade[] = { 1.884160592658218e-2L , 6.038881904059573e-2L, 1.239917516308172e-1L,
209 1.999045567181744e-1L, 2.789358995219730e-1L };
210 #elif LDBL_MANT_DIG <= 64 211 const int maxPadeDegree = 8;
212 const double maxNormForPade[] = { 6.3854693117491799460e-3L , 2.6394893435456973676e-2L,
213 6.4216043030404063729e-2L, 1.1701165502926694307e-1L, 1.7904284231268670284e-1L, 2.4471944416607995472e-1L };
214 #elif LDBL_MANT_DIG <= 106 215 const int maxPadeDegree = 10;
216 const double maxNormForPade[] = { 1.0007161601787493236741409687186e-4L ,
217 1.0007161601787493236741409687186e-3L, 4.7069769360887572939882574746264e-3L, 1.3220386624169159689406653101695e-2L,
218 2.8063482381631737920612944054906e-2L, 4.9625993951953473052385361085058e-2L, 7.7367040706027886224557538328171e-2L,
219 1.1016843812851143391275867258512e-1L };
221 const int maxPadeDegree = 10;
222 const double maxNormForPade[] = { 5.524506147036624377378713555116378e-5L ,
223 6.640600568157479679823602193345995e-4L, 3.227716520106894279249709728084626e-3L,
224 9.619593944683432960546978734646284e-3L, 2.134595382433742403911124458161147e-2L,
225 3.908166513900489428442993794761185e-2L, 6.266780814639442865832535460550138e-2L,
226 9.134603732914548552537150753385375e-2L };
229 for (; degree <= maxPadeDegree; ++degree)
230 if (normIminusT <= maxNormForPade[degree - 3])
235 template<
typename MatrixType>
236 inline typename MatrixPowerAtomic<MatrixType>::ComplexScalar
239 ComplexScalar logCurr = std::log(curr);
240 ComplexScalar logPrev = std::log(prev);
241 int unwindingNumber = std::ceil((numext::imag(logCurr - logPrev) - M_PI) / (2*M_PI));
242 ComplexScalar w = numext::atanh2(curr - prev, curr + prev) + ComplexScalar(0, M_PI*unwindingNumber);
243 return RealScalar(2) * std::exp(RealScalar(0.5) * p * (logCurr + logPrev)) * std::sinh(p * w) / (curr - prev);
246 template<
typename MatrixType>
247 inline typename MatrixPowerAtomic<MatrixType>::RealScalar
250 RealScalar w = numext::atanh2(curr - prev, curr + prev);
251 return 2 * std::exp(p * (std::log(curr) + std::log(prev)) / 2) * std::sinh(p * w) / (curr - prev);
273 template<
typename MatrixType>
278 RowsAtCompileTime = MatrixType::RowsAtCompileTime,
279 ColsAtCompileTime = MatrixType::ColsAtCompileTime,
280 MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
281 MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
284 typedef typename MatrixType::RealScalar RealScalar;
285 typedef typename MatrixType::Index Index;
297 { eigen_assert(A.rows() == A.cols()); }
316 template<
typename ResultType>
317 void compute(ResultType& res, RealScalar p);
319 Index rows()
const {
return m_A.rows(); }
320 Index cols()
const {
return m_A.cols(); }
323 typedef std::complex<RealScalar> ComplexScalar;
324 typedef Matrix<ComplexScalar, RowsAtCompileTime, ColsAtCompileTime, MatrixType::Options,
327 typename MatrixType::Nested m_A;
329 ComplexMatrix m_T, m_U, m_fT;
330 RealScalar m_conditionNumber;
332 RealScalar modfAndInit(RealScalar, RealScalar*);
334 template<
typename ResultType>
335 void computeIntPower(ResultType&, RealScalar);
337 template<
typename ResultType>
338 void computeFracPower(ResultType&, RealScalar);
340 template<
int Rows,
int Cols,
int Options,
int MaxRows,
int MaxCols>
341 static void revertSchur(
343 const ComplexMatrix& T,
344 const ComplexMatrix& U);
346 template<
int Rows,
int Cols,
int Options,
int MaxRows,
int MaxCols>
347 static void revertSchur(
349 const ComplexMatrix& T,
350 const ComplexMatrix& U);
353 template<
typename MatrixType>
354 template<
typename ResultType>
361 res(0,0) = std::pow(m_A.coeff(0,0), p);
364 RealScalar intpart, x = modfAndInit(p, &intpart);
365 computeIntPower(res, intpart);
366 computeFracPower(res, x);
370 template<
typename MatrixType>
371 typename MatrixPower<MatrixType>::RealScalar
376 *intpart = std::floor(x);
377 RealScalar res = x - *intpart;
379 if (!m_conditionNumber && res) {
384 const RealArray absTdiag = m_T.diagonal().array().abs();
385 m_conditionNumber = absTdiag.maxCoeff() / absTdiag.minCoeff();
388 if (res>RealScalar(0.5) && res>(1-res)*std::pow(m_conditionNumber, res)) {
395 template<
typename MatrixType>
396 template<
typename ResultType>
399 RealScalar pp = std::abs(p);
401 if (p<0) m_tmp = m_A.inverse();
404 res = MatrixType::Identity(rows(), cols());
406 if (std::fmod(pp, 2) >= 1)
413 template<
typename MatrixType>
414 template<
typename ResultType>
418 eigen_assert(m_conditionNumber);
420 revertSchur(m_tmp, m_fT, m_U);
425 template<
typename MatrixType>
426 template<
int Rows,
int Cols,
int Options,
int MaxRows,
int MaxCols>
431 { res.noalias() = U * (T.template triangularView<Upper>() * U.adjoint()); }
433 template<
typename MatrixType>
434 template<
int Rows,
int Cols,
int Options,
int MaxRows,
int MaxCols>
439 { res.noalias() = (U * (T.template triangularView<Upper>() * U.adjoint())).real(); }
454 template<
typename Derived>
458 typedef typename Derived::PlainObject PlainObject;
459 typedef typename Derived::RealScalar RealScalar;
460 typedef typename Derived::Index Index;
477 template<
typename ResultType>
478 inline void evalTo(ResultType& res)
const 481 Index rows()
const {
return m_A.rows(); }
482 Index cols()
const {
return m_A.cols(); }
486 const RealScalar m_p;
492 template<
typename MatrixPowerType>
494 {
typedef typename MatrixPowerType::PlainObject ReturnType; };
496 template<
typename Derived>
498 {
typedef typename Derived::PlainObject ReturnType; };
502 template<
typename Derived>
508 #endif // EIGEN_MATRIX_POWER Class for computing matrix powers.
Definition: MatrixPower.h:15
iterative scaling algorithm to equilibrate rows and column norms in matrices
Definition: TestIMU_Common.h:87
Definition: ReturnByValue.h:50
void compute(ResultType &res, RealScalar p)
Compute the matrix power.
Definition: MatrixPower.h:355
Definition: MatrixPower.h:18
Class for computing matrix square roots of upper triangular matrices.
Definition: MatrixSquareRoot.h:256
const MatrixPowerRetval< MatrixType > operator()(RealScalar p)
Returns the matrix power.
Definition: MatrixPower.h:306
MatrixPower(const MatrixType &A)
Constructor.
Definition: MatrixPower.h:296
Definition: BandTriangularSolver.h:13
const ComplexMatrixType & matrixU() const
Returns the unitary matrix in the Schur decomposition.
Definition: ComplexSchur.h:137
General-purpose arrays with easy API for coefficient-wise operations.
Definition: Array.h:42
MatrixPowerReturnValue(const Derived &A, RealScalar p)
Constructor.
Definition: MatrixPower.h:468
Definition: MatrixPower.h:41
The matrix class, also used for vectors and row-vectors.
Definition: Matrix.h:127
Proxy for the matrix power of some matrix (expression).
Definition: ForwardDeclarations.h:276
Base class for all dense matrices, vectors, and expressions.
Definition: MatrixBase.h:48
const ComplexMatrixType & matrixT() const
Returns the triangular matrix in the Schur decomposition.
Definition: ComplexSchur.h:161
Definition: ForwardDeclarations.h:17
void evalTo(ResultType &res) const
Compute the matrix power.
Definition: MatrixPower.h:478
double Scalar
Common scalar type.
Definition: FlexibleKalmanBase.h:48