OSVR-Core
Public Types | Public Member Functions | Protected Member Functions | Protected Attributes | List of all members
Eigen::SVDBase< _MatrixType > Class Template Reference

Mother class of SVD classes algorithms. More...

#include <SVDBase.h>

Inheritance diagram for Eigen::SVDBase< _MatrixType >:
Eigen::BDCSVD< _MatrixType > Eigen::JacobiSVD< _MatrixType, QRPreconditioner >

Public Types

enum  {
  RowsAtCompileTime = MatrixType::RowsAtCompileTime, ColsAtCompileTime = MatrixType::ColsAtCompileTime, DiagSizeAtCompileTime = EIGEN_SIZE_MIN_PREFER_DYNAMIC(RowsAtCompileTime,ColsAtCompileTime), MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
  MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime, MaxDiagSizeAtCompileTime = EIGEN_SIZE_MIN_PREFER_FIXED(MaxRowsAtCompileTime,MaxColsAtCompileTime), MatrixOptions = MatrixType::Options
}
 
typedef _MatrixType MatrixType
 
typedef MatrixType::Scalar Scalar
 
typedef NumTraits< typename MatrixType::Scalar >::Real RealScalar
 
typedef MatrixType::Index Index
 
typedef Matrix< Scalar, RowsAtCompileTime, RowsAtCompileTime, MatrixOptions, MaxRowsAtCompileTime, MaxRowsAtCompileTime > MatrixUType
 
typedef Matrix< Scalar, ColsAtCompileTime, ColsAtCompileTime, MatrixOptions, MaxColsAtCompileTime, MaxColsAtCompileTime > MatrixVType
 
typedef internal::plain_diag_type< MatrixType, RealScalar >::type SingularValuesType
 
typedef internal::plain_row_type< MatrixType >::type RowType
 
typedef internal::plain_col_type< MatrixType >::type ColType
 
typedef Matrix< Scalar, DiagSizeAtCompileTime, DiagSizeAtCompileTime, MatrixOptions, MaxDiagSizeAtCompileTime, MaxDiagSizeAtCompileTime > WorkMatrixType
 

Public Member Functions

SVDBasecompute (const MatrixType &matrix, unsigned int computationOptions)
 Method performing the decomposition of given matrix using custom options. More...
 
SVDBasecompute (const MatrixType &matrix)
 Method performing the decomposition of given matrix using current options. More...
 
const MatrixUTypematrixU () const
 
const MatrixVTypematrixV () const
 
const SingularValuesTypesingularValues () const
 
Index nonzeroSingularValues () const
 
bool computeU () const
 
bool computeV () const
 
Index rows () const
 
Index cols () const
 

Protected Member Functions

bool allocate (Index rows, Index cols, unsigned int computationOptions)
 
 SVDBase ()
 Default Constructor. More...
 

Protected Attributes

MatrixUType m_matrixU
 
MatrixVType m_matrixV
 
SingularValuesType m_singularValues
 
bool m_isInitialized
 
bool m_isAllocated
 
bool m_computeFullU
 
bool m_computeThinU
 
bool m_computeFullV
 
bool m_computeThinV
 
unsigned int m_computationOptions
 
Index m_nonzeroSingularValues
 
Index m_rows
 
Index m_cols
 
Index m_diagSize
 

Detailed Description

template<typename _MatrixType>
class Eigen::SVDBase< _MatrixType >

Mother class of SVD classes algorithms.

Parameters
MatrixTypethe type of the matrix of which we are computing the SVD decomposition SVD decomposition consists in decomposing any n-by-p matrix A as a product

\[ A = U S V^* \]

where U is a n-by-n unitary, V is a p-by-p unitary, and S is a n-by-p real positive matrix which is zero outside of its main diagonal; the diagonal entries of S are known as the singular values of A and the columns of U and V are known as the left and right singular vectors of A respectively.

Singular values are always sorted in decreasing order.

You can ask for only thin U or V to be computed, meaning the following. In case of a rectangular n-by-p matrix, letting m be the smaller value among n and p, there are only m singular vectors; the remaining columns of U and V do not correspond to actual singular vectors. Asking for thin U or V means asking for only their m first columns to be formed. So U is then a n-by-m matrix, and V is then a p-by-m matrix. Notice that thin U and V are all you need for (least squares) solving.

If the input matrix has inf or nan coefficients, the result of the computation is undefined, but the computation is guaranteed to terminate in finite (and reasonable) time.

See also
MatrixBase::genericSvd()

Constructor & Destructor Documentation

§ SVDBase()

template<typename _MatrixType>
Eigen::SVDBase< _MatrixType >::SVDBase ( )
inlineprotected

Default Constructor.

Default constructor of SVDBase

Member Function Documentation

§ compute() [1/2]

template<typename _MatrixType>
SVDBase& Eigen::SVDBase< _MatrixType >::compute ( const MatrixType &  matrix,
unsigned int  computationOptions 
)

Method performing the decomposition of given matrix using custom options.

Parameters
matrixthe matrix to decompose
computationOptionsoptional parameter allowing to specify if you want full or thin U or V unitaries to be computed. By default, none is computed. This is a bit-field, the possible bits are ComputeFullU, ComputeThinU, ComputeFullV, ComputeThinV.

Thin unitaries are only available if your matrix type has a Dynamic number of columns (for example MatrixXf). They also are not available with the (non-default) FullPivHouseholderQR preconditioner.

§ compute() [2/2]

template<typename _MatrixType>
SVDBase& Eigen::SVDBase< _MatrixType >::compute ( const MatrixType &  matrix)

Method performing the decomposition of given matrix using current options.

Parameters
matrixthe matrix to decompose

This method uses the current computationOptions, as already passed to the constructor or to compute(const MatrixType&, unsigned int).

§ computeU()

template<typename _MatrixType>
bool Eigen::SVDBase< _MatrixType >::computeU ( ) const
inline
Returns
true if U (full or thin) is asked for in this SVD decomposition

§ computeV()

template<typename _MatrixType>
bool Eigen::SVDBase< _MatrixType >::computeV ( ) const
inline
Returns
true if V (full or thin) is asked for in this SVD decomposition

§ matrixU()

template<typename _MatrixType>
const MatrixUType& Eigen::SVDBase< _MatrixType >::matrixU ( ) const
inline
Returns
the U matrix.

For the SVDBase decomposition of a n-by-p matrix, letting m be the minimum of n and p, the U matrix is n-by-n if you asked for ComputeFullU, and is n-by-m if you asked for ComputeThinU.

The m first columns of U are the left singular vectors of the matrix being decomposed.

This method asserts that you asked for U to be computed.

§ matrixV()

template<typename _MatrixType>
const MatrixVType& Eigen::SVDBase< _MatrixType >::matrixV ( ) const
inline
Returns
the V matrix.

For the SVD decomposition of a n-by-p matrix, letting m be the minimum of n and p, the V matrix is p-by-p if you asked for ComputeFullV, and is p-by-m if you asked for ComputeThinV.

The m first columns of V are the right singular vectors of the matrix being decomposed.

This method asserts that you asked for V to be computed.

§ nonzeroSingularValues()

template<typename _MatrixType>
Index Eigen::SVDBase< _MatrixType >::nonzeroSingularValues ( ) const
inline
Returns
the number of singular values that are not exactly 0

§ singularValues()

template<typename _MatrixType>
const SingularValuesType& Eigen::SVDBase< _MatrixType >::singularValues ( ) const
inline
Returns
the vector of singular values.

For the SVD decomposition of a n-by-p matrix, letting m be the minimum of n and p, the returned vector has size m. Singular values are always sorted in decreasing order.


The documentation for this class was generated from the following file: