OSVR-Core
product.h
1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
5 //
6 // This Source Code Form is subject to the terms of the Mozilla
7 // Public License v. 2.0. If a copy of the MPL was not distributed
8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9 
10 #include "main.h"
11 #include <Eigen/QR>
12 
13 template<typename Derived1, typename Derived2>
14 bool areNotApprox(const MatrixBase<Derived1>& m1, const MatrixBase<Derived2>& m2, typename Derived1::RealScalar epsilon = NumTraits<typename Derived1::RealScalar>::dummy_precision())
15 {
16  return !((m1-m2).cwiseAbs2().maxCoeff() < epsilon * epsilon
17  * (std::max)(m1.cwiseAbs2().maxCoeff(), m2.cwiseAbs2().maxCoeff()));
18 }
19 
20 template<typename MatrixType> void product(const MatrixType& m)
21 {
22  /* this test covers the following files:
23  Identity.h Product.h
24  */
25  typedef typename MatrixType::Index Index;
26  typedef typename MatrixType::Scalar Scalar;
31  typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::ColsAtCompileTime,
32  MatrixType::Flags&RowMajorBit?ColMajor:RowMajor> OtherMajorMatrixType;
33 
34  Index rows = m.rows();
35  Index cols = m.cols();
36 
37  // this test relies a lot on Random.h, and there's not much more that we can do
38  // to test it, hence I consider that we will have tested Random.h
39  MatrixType m1 = MatrixType::Random(rows, cols),
40  m2 = MatrixType::Random(rows, cols),
41  m3(rows, cols);
42  RowSquareMatrixType
43  identity = RowSquareMatrixType::Identity(rows, rows),
44  square = RowSquareMatrixType::Random(rows, rows),
45  res = RowSquareMatrixType::Random(rows, rows);
46  ColSquareMatrixType
47  square2 = ColSquareMatrixType::Random(cols, cols),
48  res2 = ColSquareMatrixType::Random(cols, cols);
49  RowVectorType v1 = RowVectorType::Random(rows);
50  ColVectorType vc2 = ColVectorType::Random(cols), vcres(cols);
51  OtherMajorMatrixType tm1 = m1;
52 
53  Scalar s1 = internal::random<Scalar>();
54 
55  Index r = internal::random<Index>(0, rows-1),
56  c = internal::random<Index>(0, cols-1),
57  c2 = internal::random<Index>(0, cols-1);
58 
59  // begin testing Product.h: only associativity for now
60  // (we use Transpose.h but this doesn't count as a test for it)
61  VERIFY_IS_APPROX((m1*m1.transpose())*m2, m1*(m1.transpose()*m2));
62  m3 = m1;
63  m3 *= m1.transpose() * m2;
64  VERIFY_IS_APPROX(m3, m1 * (m1.transpose()*m2));
65  VERIFY_IS_APPROX(m3, m1 * (m1.transpose()*m2));
66 
67  // continue testing Product.h: distributivity
68  VERIFY_IS_APPROX(square*(m1 + m2), square*m1+square*m2);
69  VERIFY_IS_APPROX(square*(m1 - m2), square*m1-square*m2);
70 
71  // continue testing Product.h: compatibility with ScalarMultiple.h
72  VERIFY_IS_APPROX(s1*(square*m1), (s1*square)*m1);
73  VERIFY_IS_APPROX(s1*(square*m1), square*(m1*s1));
74 
75  // test Product.h together with Identity.h
76  VERIFY_IS_APPROX(v1, identity*v1);
77  VERIFY_IS_APPROX(v1.transpose(), v1.transpose() * identity);
78  // again, test operator() to check const-qualification
79  VERIFY_IS_APPROX(MatrixType::Identity(rows, cols)(r,c), static_cast<Scalar>(r==c));
80 
81  if (rows!=cols)
82  VERIFY_RAISES_ASSERT(m3 = m1*m1);
83 
84  // test the previous tests were not screwed up because operator* returns 0
85  // (we use the more accurate default epsilon)
86  if (!NumTraits<Scalar>::IsInteger && (std::min)(rows,cols)>1)
87  {
88  VERIFY(areNotApprox(m1.transpose()*m2,m2.transpose()*m1));
89  }
90 
91  // test optimized operator+= path
92  res = square;
93  res.noalias() += m1 * m2.transpose();
94  VERIFY_IS_APPROX(res, square + m1 * m2.transpose());
95  if (!NumTraits<Scalar>::IsInteger && (std::min)(rows,cols)>1)
96  {
97  VERIFY(areNotApprox(res,square + m2 * m1.transpose()));
98  }
99  vcres = vc2;
100  vcres.noalias() += m1.transpose() * v1;
101  VERIFY_IS_APPROX(vcres, vc2 + m1.transpose() * v1);
102 
103  // test optimized operator-= path
104  res = square;
105  res.noalias() -= m1 * m2.transpose();
106  VERIFY_IS_APPROX(res, square - (m1 * m2.transpose()));
107  if (!NumTraits<Scalar>::IsInteger && (std::min)(rows,cols)>1)
108  {
109  VERIFY(areNotApprox(res,square - m2 * m1.transpose()));
110  }
111  vcres = vc2;
112  vcres.noalias() -= m1.transpose() * v1;
113  VERIFY_IS_APPROX(vcres, vc2 - m1.transpose() * v1);
114 
115  tm1 = m1;
116  VERIFY_IS_APPROX(tm1.transpose() * v1, m1.transpose() * v1);
117  VERIFY_IS_APPROX(v1.transpose() * tm1, v1.transpose() * m1);
118 
119  // test submatrix and matrix/vector product
120  for (int i=0; i<rows; ++i)
121  res.row(i) = m1.row(i) * m2.transpose();
122  VERIFY_IS_APPROX(res, m1 * m2.transpose());
123  // the other way round:
124  for (int i=0; i<rows; ++i)
125  res.col(i) = m1 * m2.transpose().col(i);
126  VERIFY_IS_APPROX(res, m1 * m2.transpose());
127 
128  res2 = square2;
129  res2.noalias() += m1.transpose() * m2;
130  VERIFY_IS_APPROX(res2, square2 + m1.transpose() * m2);
131  if (!NumTraits<Scalar>::IsInteger && (std::min)(rows,cols)>1)
132  {
133  VERIFY(areNotApprox(res2,square2 + m2.transpose() * m1));
134  }
135 
136  VERIFY_IS_APPROX(res.col(r).noalias() = square.adjoint() * square.col(r), (square.adjoint() * square.col(r)).eval());
137  VERIFY_IS_APPROX(res.col(r).noalias() = square * square.col(r), (square * square.col(r)).eval());
138 
139  // vector at runtime (see bug 1166)
140  {
141  RowSquareMatrixType ref(square);
142  ColSquareMatrixType ref2(square2);
143  ref = res = square;
144  VERIFY_IS_APPROX(res.block(0,0,1,rows).noalias() = m1.col(0).transpose() * square.transpose(), (ref.row(0) = m1.col(0).transpose() * square.transpose()));
145  VERIFY_IS_APPROX(res.block(0,0,1,rows).noalias() = m1.block(0,0,rows,1).transpose() * square.transpose(), (ref.row(0) = m1.col(0).transpose() * square.transpose()));
146  VERIFY_IS_APPROX(res.block(0,0,1,rows).noalias() = m1.col(0).transpose() * square, (ref.row(0) = m1.col(0).transpose() * square));
147  VERIFY_IS_APPROX(res.block(0,0,1,rows).noalias() = m1.block(0,0,rows,1).transpose() * square, (ref.row(0) = m1.col(0).transpose() * square));
148  ref2 = res2 = square2;
149  VERIFY_IS_APPROX(res2.block(0,0,1,cols).noalias() = m1.row(0) * square2.transpose(), (ref2.row(0) = m1.row(0) * square2.transpose()));
150  VERIFY_IS_APPROX(res2.block(0,0,1,cols).noalias() = m1.block(0,0,1,cols) * square2.transpose(), (ref2.row(0) = m1.row(0) * square2.transpose()));
151  VERIFY_IS_APPROX(res2.block(0,0,1,cols).noalias() = m1.row(0) * square2, (ref2.row(0) = m1.row(0) * square2));
152  VERIFY_IS_APPROX(res2.block(0,0,1,cols).noalias() = m1.block(0,0,1,cols) * square2, (ref2.row(0) = m1.row(0) * square2));
153  }
154 
155  // inner product
156  {
157  Scalar x = square2.row(c) * square2.col(c2);
158  VERIFY_IS_APPROX(x, square2.row(c).transpose().cwiseProduct(square2.col(c2)).sum());
159  }
160 
161  // outer product
162  VERIFY_IS_APPROX(m1.col(c) * m1.row(r), m1.block(0,c,rows,1) * m1.block(r,0,1,cols));
163  VERIFY_IS_APPROX(m1.row(r).transpose() * m1.col(c).transpose(), m1.block(r,0,1,cols).transpose() * m1.block(0,c,rows,1).transpose());
164  VERIFY_IS_APPROX(m1.block(0,c,rows,1) * m1.row(r), m1.block(0,c,rows,1) * m1.block(r,0,1,cols));
165  VERIFY_IS_APPROX(m1.col(c) * m1.block(r,0,1,cols), m1.block(0,c,rows,1) * m1.block(r,0,1,cols));
166  VERIFY_IS_APPROX(m1.leftCols(1) * m1.row(r), m1.block(0,0,rows,1) * m1.block(r,0,1,cols));
167  VERIFY_IS_APPROX(m1.col(c) * m1.topRows(1), m1.block(0,c,rows,1) * m1.block(0,0,1,cols));
168 
169  // Aliasing
170  {
171  ColVectorType x(cols); x.setRandom();
172  ColVectorType z(x);
173  ColVectorType y(cols); y.setZero();
174  ColSquareMatrixType A(cols,cols); A.setRandom();
175  // CwiseBinaryOp
176  VERIFY_IS_APPROX(x = y + A*x, A*z);
177  x = z;
178  // CwiseUnaryOp
179  VERIFY_IS_APPROX(x = Scalar(1.)*(A*x), A*z);
180  }
181 }
Holds information about the various numeric (i.e.
Definition: NumTraits.h:88
const unsigned int RowMajorBit
for a matrix, this means that the storage order is row-major.
Definition: Constants.h:53
Eigen::Transpose< Derived > transpose()
Definition: Transpose.h:199
Storage order is column major (see TopicStorageOrders).
Definition: Constants.h:264
Storage order is row major (see TopicStorageOrders).
Definition: Constants.h:266
EIGEN_STRONG_INLINE const CwiseUnaryOp< internal::scalar_abs2_op< Scalar >, const Derived > cwiseAbs2() const
Definition: MatrixBase.h:32
The matrix class, also used for vectors and row-vectors.
Definition: Matrix.h:127
Derived & setRandom(Index size)
Resizes to the given newSize, and sets all coefficients in this expression to random values...
Definition: Random.h:126
Base class for all dense matrices, vectors, and expressions.
Definition: MatrixBase.h:48
double Scalar
Common scalar type.
Definition: FlexibleKalmanBase.h:48