13 template<
typename Derived1,
typename Derived2>
16 return !((m1-m2).cwiseAbs2().maxCoeff() < epsilon * epsilon
20 template<
typename MatrixType>
void product(
const MatrixType& m)
25 typedef typename MatrixType::Index Index;
31 typedef Matrix<
Scalar, MatrixType::RowsAtCompileTime, MatrixType::ColsAtCompileTime,
34 Index rows = m.rows();
35 Index cols = m.cols();
39 MatrixType m1 = MatrixType::Random(rows, cols),
40 m2 = MatrixType::Random(rows, cols),
43 identity = RowSquareMatrixType::Identity(rows, rows),
44 square = RowSquareMatrixType::Random(rows, rows),
45 res = RowSquareMatrixType::Random(rows, rows);
47 square2 = ColSquareMatrixType::Random(cols, cols),
48 res2 = ColSquareMatrixType::Random(cols, cols);
49 RowVectorType v1 = RowVectorType::Random(rows);
50 ColVectorType vc2 = ColVectorType::Random(cols), vcres(cols);
51 OtherMajorMatrixType tm1 = m1;
53 Scalar s1 = internal::random<Scalar>();
55 Index r = internal::random<Index>(0, rows-1),
56 c = internal::random<Index>(0, cols-1),
57 c2 = internal::random<Index>(0, cols-1);
61 VERIFY_IS_APPROX((m1*m1.transpose())*m2, m1*(m1.transpose()*m2));
63 m3 *= m1.transpose() * m2;
64 VERIFY_IS_APPROX(m3, m1 * (m1.transpose()*m2));
65 VERIFY_IS_APPROX(m3, m1 * (m1.transpose()*m2));
68 VERIFY_IS_APPROX(square*(m1 + m2), square*m1+square*m2);
69 VERIFY_IS_APPROX(square*(m1 - m2), square*m1-square*m2);
72 VERIFY_IS_APPROX(s1*(square*m1), (s1*square)*m1);
73 VERIFY_IS_APPROX(s1*(square*m1), square*(m1*s1));
76 VERIFY_IS_APPROX(v1, identity*v1);
77 VERIFY_IS_APPROX(v1.transpose(), v1.transpose() * identity);
79 VERIFY_IS_APPROX(MatrixType::Identity(rows, cols)(r,c), static_cast<Scalar>(r==c));
82 VERIFY_RAISES_ASSERT(m3 = m1*m1);
88 VERIFY(areNotApprox(m1.transpose()*m2,m2.
transpose()*m1));
94 VERIFY_IS_APPROX(res, square + m1 * m2.
transpose());
97 VERIFY(areNotApprox(res,square + m2 * m1.
transpose()));
100 vcres.noalias() += m1.transpose() * v1;
101 VERIFY_IS_APPROX(vcres, vc2 + m1.transpose() * v1);
106 VERIFY_IS_APPROX(res, square - (m1 * m2.
transpose()));
109 VERIFY(areNotApprox(res,square - m2 * m1.
transpose()));
112 vcres.noalias() -= m1.transpose() * v1;
113 VERIFY_IS_APPROX(vcres, vc2 - m1.transpose() * v1);
116 VERIFY_IS_APPROX(tm1.transpose() * v1, m1.transpose() * v1);
117 VERIFY_IS_APPROX(v1.transpose() * tm1, v1.transpose() * m1);
120 for (
int i=0; i<rows; ++i)
122 VERIFY_IS_APPROX(res, m1 * m2.
transpose());
124 for (
int i=0; i<rows; ++i)
126 VERIFY_IS_APPROX(res, m1 * m2.
transpose());
129 res2.noalias() += m1.transpose() * m2;
130 VERIFY_IS_APPROX(res2, square2 + m1.transpose() * m2);
133 VERIFY(areNotApprox(res2,square2 + m2.
transpose() * m1));
136 VERIFY_IS_APPROX(res.col(r).noalias() = square.adjoint() * square.col(r), (square.adjoint() * square.col(r)).eval());
137 VERIFY_IS_APPROX(res.col(r).noalias() = square * square.col(r), (square * square.col(r)).eval());
141 RowSquareMatrixType ref(square);
142 ColSquareMatrixType ref2(square2);
144 VERIFY_IS_APPROX(res.block(0,0,1,rows).noalias() = m1.col(0).transpose() * square.transpose(), (ref.row(0) = m1.col(0).transpose() * square.transpose()));
145 VERIFY_IS_APPROX(res.block(0,0,1,rows).noalias() = m1.block(0,0,rows,1).transpose() * square.transpose(), (ref.row(0) = m1.col(0).transpose() * square.transpose()));
146 VERIFY_IS_APPROX(res.block(0,0,1,rows).noalias() = m1.col(0).transpose() * square, (ref.row(0) = m1.col(0).transpose() * square));
147 VERIFY_IS_APPROX(res.block(0,0,1,rows).noalias() = m1.block(0,0,rows,1).transpose() * square, (ref.row(0) = m1.col(0).transpose() * square));
148 ref2 = res2 = square2;
149 VERIFY_IS_APPROX(res2.block(0,0,1,cols).noalias() = m1.row(0) * square2.transpose(), (ref2.row(0) = m1.row(0) * square2.transpose()));
150 VERIFY_IS_APPROX(res2.block(0,0,1,cols).noalias() = m1.block(0,0,1,cols) * square2.transpose(), (ref2.row(0) = m1.row(0) * square2.transpose()));
151 VERIFY_IS_APPROX(res2.block(0,0,1,cols).noalias() = m1.row(0) * square2, (ref2.row(0) = m1.row(0) * square2));
152 VERIFY_IS_APPROX(res2.block(0,0,1,cols).noalias() = m1.block(0,0,1,cols) * square2, (ref2.row(0) = m1.row(0) * square2));
157 Scalar x = square2.row(c) * square2.col(c2);
158 VERIFY_IS_APPROX(x, square2.row(c).transpose().cwiseProduct(square2.col(c2)).sum());
162 VERIFY_IS_APPROX(m1.col(c) * m1.row(r), m1.block(0,c,rows,1) * m1.block(r,0,1,cols));
163 VERIFY_IS_APPROX(m1.row(r).transpose() * m1.col(c).transpose(), m1.block(r,0,1,cols).transpose() * m1.block(0,c,rows,1).transpose());
164 VERIFY_IS_APPROX(m1.block(0,c,rows,1) * m1.row(r), m1.block(0,c,rows,1) * m1.block(r,0,1,cols));
165 VERIFY_IS_APPROX(m1.col(c) * m1.block(r,0,1,cols), m1.block(0,c,rows,1) * m1.block(r,0,1,cols));
166 VERIFY_IS_APPROX(m1.leftCols(1) * m1.row(r), m1.block(0,0,rows,1) * m1.block(r,0,1,cols));
167 VERIFY_IS_APPROX(m1.col(c) * m1.topRows(1), m1.block(0,c,rows,1) * m1.block(0,0,1,cols));
171 ColVectorType x(cols); x.setRandom();
173 ColVectorType y(cols); y.setZero();
174 ColSquareMatrixType A(cols,cols); A.
setRandom();
176 VERIFY_IS_APPROX(x = y + A*x, A*z);
179 VERIFY_IS_APPROX(x =
Scalar(1.)*(A*x), A*z);
Holds information about the various numeric (i.e.
Definition: NumTraits.h:88
const unsigned int RowMajorBit
for a matrix, this means that the storage order is row-major.
Definition: Constants.h:53
Eigen::Transpose< Derived > transpose()
Definition: Transpose.h:199
Storage order is column major (see TopicStorageOrders).
Definition: Constants.h:264
Storage order is row major (see TopicStorageOrders).
Definition: Constants.h:266
EIGEN_STRONG_INLINE const CwiseUnaryOp< internal::scalar_abs2_op< Scalar >, const Derived > cwiseAbs2() const
Definition: MatrixBase.h:32
The matrix class, also used for vectors and row-vectors.
Definition: Matrix.h:127
Derived & setRandom(Index size)
Resizes to the given newSize, and sets all coefficients in this expression to random values...
Definition: Random.h:126
Base class for all dense matrices, vectors, and expressions.
Definition: MatrixBase.h:48
double Scalar
Common scalar type.
Definition: FlexibleKalmanBase.h:48