|
funcy
1.6.1
|
Models for the description of different biologial soft tissues. More...
|
Functions | |
| template<linalg::Matrix Mat, int offset = linalg::dim< Mat >()> | |
| auto | funcy::incompressible_adipose_tissue_sommer_holzapfel (double cCells, double k1, double k2, double kappa, const Mat &A, const Mat &F) |
| Model for adipose tissue of [Sommer2013]. More... | |
| template<linalg::Matrix Mat, int offset = linalg::dim< Mat >()> | |
| auto | funcy::incompressible_adipose_tissue_sommer_holzapfel (const Mat &A, const Mat &F) |
| Model for adipose tissue of [Sommer2013]. More... | |
| template<class Inflation , class Compression , linalg::Matrix Mat, int offset = linalg::dim< Mat >()> | |
| auto | funcy::compressible_adipose_tissue_sommer_holzapfel (double cCells, double k1, double k2, double kappa, double d0, double d1, const Mat &M, const Mat &F) |
| Compressible version of the model for adipose tissue of [Sommer2013]. More... | |
| template<class Inflation , class Compression , linalg::Matrix Mat, int offset = linalg::dim< Mat >()> | |
| auto | funcy::compressible_adipose_tissue_sommer_holzapfel (double d0, double d1, const Mat &M, const Mat &F) |
| Compressible version of the model for adipose tissue of [Sommer2013]. Material parameters are taken from the same publication, Table 2, i.e. \(c_\mathrm{Cells}=0.15 (\,\mathrm{kPa})\), \(k_1=0.8 (\,\mathrm{kPa})\), \(k_2=47.3\) and \(\kappa=0.09\). More... | |
| template<linalg::Matrix Mat, int offset = linalg::dim< Mat >()> | |
| auto | funcy::incompressible_muscle_tissue_martins (double c, double b, double d, double e, const Mat &A, const Mat &F) |
| Incompressible version of the model for muscle tissue of [Martins1998]. More... | |
| template<linalg::Matrix Mat, int offset = linalg::dim< Mat >()> | |
| auto | funcy::incompressible_muscle_tissue_martins (const Mat &A, const Mat &F) |
| Incompressible version of the model for muscle tissue of [Martins1998]. More... | |
| template<class Inflation , class Compression , linalg::Matrix Mat, int offset = linalg::dim< Mat >()> | |
| auto | funcy::compressible_muscle_tissue_martins (double c, double b, double A, double a, double d0, double d1, const Mat &M, const Mat &F) |
| Compressible version of the model for muscle tissue of [Martins1998]. More... | |
| template<class Inflation , class Compression , linalg::Matrix Mat, int offset = linalg::dim< Mat >()> | |
| auto | funcy::compressible_muscle_tissue_martins (double d0, double d1, const Mat &M, const Mat &F) |
| Compressible version of the model for muscle tissue of [Martins1998]. More... | |
| template<linalg::Matrix Mat, int n = linalg::dim< Mat >()> | |
| auto | funcy::incompressible_skin_hendriks (double c0, double c1, const Mat &F) |
| Model for skin tissue of [Hendriks2005]. More... | |
| template<linalg::Matrix Mat, int n = linalg::dim< Mat >()> | |
| auto | funcy::incompressible_skin_hendriks (const Mat &F) |
| Model for skin tissue of [Hendriks2005]. More... | |
| template<class InflationPenalty , class CompressionPenalty , linalg::Matrix Mat, int n = linalg::dim< Mat >()> | |
| auto | funcy::compressible_skin_hendriks (double c0, double c1, double d0, double d1, const Mat &F) |
| Compressible version of the model for skin tissue of [Hendriks2005]. More... | |
| template<class InflationPenalty , class CompressionPenalty , linalg::Matrix M, int n = linalg::dim< M >()> | |
| auto | funcy::compressible_skin_hendriks (double d0, double d1, const M &F) |
| Compressible version of the model for skin tissue of [Hendriks2005]. More... | |
Models for the description of different biologial soft tissues.
| auto funcy::compressible_adipose_tissue_sommer_holzapfel | ( | double | cCells, |
| double | k1, | ||
| double | k2, | ||
| double | kappa, | ||
| double | d0, | ||
| double | d1, | ||
| const Mat & | M, | ||
| const Mat & | F | ||
| ) |
Compressible version of the model for adipose tissue of [Sommer2013].
Implementation of the stored energy function \( W(F)= c_\mathrm{Cells}(\iota_1-3) + \frac{k_1}{k_2}\exp(k_2(\kappa\iota_1+(1-3\kappa)*\iota_4)^2-1) + d_0\Gamma_\mathrm{Inflation}(\det(F)) + d_1\Gamma_\mathrm{Compression} \), where \( \iota_1,\iota_4 \) are the first and first mixed invariant of the strain tensor \(F^T F\).
| cCells | scaling of the neo-Hookean model for the description of the adipocytes as cell foam. |
| k1 | stress-like parameter of the model for the interlobular septa |
| k2 | dimensionless parameter of the model for the interlobular septa |
| kappa | fiber dispersion parameter \((0\le\kappa\le\frac{1}{3})\). |
| M | structural tensor describing the fiber direction of the interlobular septa, i.e. \(M=v\otimes v\) for a fiber direction \(v\) |
| d0 | scaling of the penalty function for inflation |
| d1 | scaling of the penalty function for compression |
| F | initial deformation gradient |
| auto funcy::compressible_adipose_tissue_sommer_holzapfel | ( | double | d0, |
| double | d1, | ||
| const Mat & | M, | ||
| const Mat & | F | ||
| ) |
Compressible version of the model for adipose tissue of [Sommer2013]. Material parameters are taken from the same publication, Table 2, i.e. \(c_\mathrm{Cells}=0.15 (\,\mathrm{kPa})\), \(k_1=0.8 (\,\mathrm{kPa})\), \(k_2=47.3\) and \(\kappa=0.09\).
Implementation of the stored energy function \( W(F)= c_\mathrm{Cells}(\iota_1-3) + \frac{k_1}{k_2}\exp(k_2(\kappa\iota_1+(1-3\kappa)*\iota_4)^2-1) + d_0\Gamma_\mathrm{Inflation}(\det(F)) + d_1\Gamma_\mathrm{Compression} \), where \( \iota_1,\iota_4 \) are the first and first mixed invariant of the strain tensor \(F^T F\).
| d0 | scaling of the penalty function for inflation |
| d1 | scaling of the penalty function for compression |
| M | structural tensor describing the fiber direction of the interlobular septa, i.e. \(M=v\otimes v\) for a fiber direction \(v\) |
| F | initial deformation gradient |
| auto funcy::compressible_muscle_tissue_martins | ( | double | c, |
| double | b, | ||
| double | A, | ||
| double | a, | ||
| double | d0, | ||
| double | d1, | ||
| const Mat & | M, | ||
| const Mat & | F | ||
| ) |
Compressible version of the model for muscle tissue of [Martins1998].
Implementation of the stored energy function \( W(F)=c(\exp(b(\bar\iota_1-3))-1) + A(\exp(a(\bar\iota_6-1)^2)-1) + d_0\Gamma_\mathrm{Inflation}(\det(F)) + d_1\Gamma_\mathrm{Compression} \), where \(\bar\iota_1,\bar\iota_6=\bar\iota_4\) are the first modified principal and the third modified mixed invariant of the strain tensor \(F^T F\).
| c | first material parameter for the isotropic part |
| b | second material parameter for the isotropic part |
| A | first material parameter for the anisotropic part |
| a | second material parameter for the anisotropic part |
| d0 | material parameter for the penalty for inflation |
| d1 | material parameter for the penalty for compression |
| M | structural (rank-one) tensor describing the initial orientation of muscle fibers for \(F=I\), where \(I\) is the unit matrix. |
| F | deformation gradient |
| auto funcy::compressible_muscle_tissue_martins | ( | double | d0, |
| double | d1, | ||
| const Mat & | M, | ||
| const Mat & | F | ||
| ) |
Compressible version of the model for muscle tissue of [Martins1998].
Implementation of the stored energy function \( W(F)=c(\exp(b(\bar\iota_1-3))-1) + A(\exp(a(\bar\iota_6-1)^2)-1) + d_0\Gamma_\mathrm{Inflation}(\det(F)) + d_1\Gamma_\mathrm{Compression}(\det(F))\), where \(\bar\iota_1,\bar\iota_6=\bar\iota_4\) are the first modified principal and the third modified mixed invariant of the strain tensor \(F^T F\).
Material parameters taken from the above mentioned publication, i.e. \(a=0.387 (\,\mathrm{kPa})\), \( b = 23.46 \), \( A = 0.584 (\,\mathrm{kPa}) \) and \( a = 12.43\).
| d0 | material parameter for the penalty for inflation |
| d1 | material parameter for the penalty for compression |
| M | structural (rank-one) tensor describing the initial orientation of muscle fibers for \(F=I\), where \(I\) is the unit matrix. |
| F | deformation gradient |
| auto funcy::compressible_skin_hendriks | ( | double | c0, |
| double | c1, | ||
| double | d0, | ||
| double | d1, | ||
| const Mat & | F | ||
| ) |
Compressible version of the model for skin tissue of [Hendriks2005].
Implementation of the stored energy function \(W(F)=c_0(\iota_1-3) + c_1(\iota_1-3)(\iota_2-3) + d_0\Gamma_\mathrm{Inflation}(\det(F)) + d_1\Gamma_\mathrm{Compression}\), where \(\iota_1,\iota_2\) are the first and second principal invariants of the strain tensor \(F^T F\).
| c0 | scaling of the shifted first principal invariant |
| c1 | scaling of the product of shifted first and second principal invariant |
| d0 | scaling of the penalty function for inflation |
| d1 | scaling of the penalty function for compression |
| F | initial deformation gradient |
| auto funcy::compressible_skin_hendriks | ( | double | d0, |
| double | d1, | ||
| const M & | F | ||
| ) |
Compressible version of the model for skin tissue of [Hendriks2005].
Implementation of the stored energy function \(W(F)=c_0(\iota_1-3) + c_1(\iota_1-3)(\iota_2-3) + d_0\Gamma_\mathrm{Inflation}(\det(F)) + d_1\Gamma_\mathrm{Compression}\), where \(\iota_1,\iota_2\) are the first and second principal invariants of the strain tensor \(F^T F\).
Material parameters are taken from [Xu2011], i.e \(c_0=9.4 (\,\mathrm{kPa})\) and \( c_1 = 82 (\,\mathrm{kPa}) \).
| d0 | scaling of the penalty function for inflation |
| d1 | scaling of the penalty function for compression |
| F | initial deformation gradient |
| auto funcy::incompressible_adipose_tissue_sommer_holzapfel | ( | double | cCells, |
| double | k1, | ||
| double | k2, | ||
| double | kappa, | ||
| const Mat & | A, | ||
| const Mat & | F | ||
| ) |
Model for adipose tissue of [Sommer2013].
Implementation of the stored energy function \( W(F)= c_\mathrm{Cells}(\iota_1-3) + \frac{k_1}{k_2}\exp(k_2(\kappa\iota_1+(1-3\kappa)*\iota_4)^2-1) \), where \( \iota_1,\iota_4 \) are the first and first mixed invariant of the strain tensor \(F^T F\).
| cCells | scaling of the neo-Hookean model for the description of the adipocytes as cell foam. |
| k1 | stress-like parameter of the model for the interlobular septa |
| k2 | dimensionless parameter of the model for the interlobular septa |
| kappa | fiber dispersion parameter \((0\le\kappa\le\frac{1}{3})\). |
| M | structural tensor describing the fiber direction of the interlobular septa, i.e. \(M=v\otimes v\) for a fiber direction \(v\) |
| F | initial deformation gradient |
| offset | number of rows/columns of F, this is only required to adjust the offset of the energy functional such that \(W(F)=0\) for \(F=I\). |
| auto funcy::incompressible_adipose_tissue_sommer_holzapfel | ( | const Mat & | A, |
| const Mat & | F | ||
| ) |
Model for adipose tissue of [Sommer2013].
Implementation of the stored energy function \( W(F)= c_\mathrm{Cells}(\iota_1-3) + \frac{k_1}{k_2}\exp(k_2(\kappa\iota_1+(1-3\kappa)*\iota_4)^2-1) \), where \( \iota_1,\iota_4 \) are the first and first mixed invariant of the strain tensor \(F^T F\).
Material parameters are taken from the above mentioned publication, Table 2, i.e. \(c_\mathrm{Cells}=0.15 (\,\mathrm{kPa})\), \(k_1=0.8 (\,\mathrm{kPa})\), \(k_2=47.3\) and \(\kappa=0.09\).
| M | structural tensor describing the fiber direction of the interlobular septa, i.e. \(M=v\otimes v\) for a fiber direction \(v\) |
| F | initial deformation gradient |
| auto funcy::incompressible_muscle_tissue_martins | ( | double | c, |
| double | b, | ||
| double | d, | ||
| double | e, | ||
| const Mat & | A, | ||
| const Mat & | F | ||
| ) |
Incompressible version of the model for muscle tissue of [Martins1998].
Implementation of the stored energy function \( W(F)=c(\exp(b(\bar\iota_1-3))-1) + A(\exp(a(\bar\iota_6-1)^2)-1) \), where \(\bar\iota_1,\bar\iota_6=\bar\iota_4\) are the first modified principal and the third modified mixed invariant of the strain tensor \(F^T F\).
| c | first material parameter for the isotropic part |
| b | second material parameter for the isotropic part |
| d | first material parameter for the anisotropic part |
| e | second material parameter for the anisotropic part |
| M | structural (rank-one) tensor describing the initial orientation of muscle fibers for \(F=I\), where \(I\) is the unit matrix. |
| F | deformation gradient |
| offset | number of rows/columns of F, this is only required to adjust the offset of the energy functional such that \(W(F)=0\) for \(F=I\). |
| auto funcy::incompressible_muscle_tissue_martins | ( | const Mat & | A, |
| const Mat & | F | ||
| ) |
Incompressible version of the model for muscle tissue of [Martins1998].
Implementation of the stored energy function \( W(F)=c(\exp(b(\bar\iota_1-3))-1) + A(\exp(a(\bar\iota_6-1)^2)-1) \), where \(\bar\iota_1,\bar\iota_6=\bar\iota_4\) are the first modified principal and the third modified mixed invariant of the strain tensor \(F^T F\).
Material parameters taken from the same above mentioned publication, i.e. \(a=0.387 (\,\mathrm{kPa})\), \( b = 23.46 \), \( A = 0.584 (\,\mathrm{kPa}) \) and \( a = 12.43\).
| M | structural (rank-one) tensor describing the initial orientation of muscle fibers for \(F=I\), where \(I\) is the unit matrix. |
| F | deformation gradient |
| auto funcy::incompressible_skin_hendriks | ( | double | c0, |
| double | c1, | ||
| const Mat & | F | ||
| ) |
Model for skin tissue of [Hendriks2005].
Implementation of the stored energy function \(W(F)=c_0(\iota_1-3) + c_1(\iota_1-3)(\iota_2-3)\), where \(\iota_1,\iota_2\) are the first and second principal invariants of the strain tensor \(F^T F\).
| c0 | scaling of the shifted first principal invariant |
| c1 | scaling of the product of shifted first and second principal invariant |
| F | initial deformation gradient |
| auto funcy::incompressible_skin_hendriks | ( | const Mat & | F | ) |
Model for skin tissue of [Hendriks2005].
Implementation of the stored energy function \(W(F)=c_0(\iota_1-3) + c_1(\iota_1-3)(\iota_2-3)\), where \(\iota_1,\iota_2\) are the first and second principal invariants of the strain tensor \(F^T F\).
Material parameters are taken from [Xu2011], i.e \(c_0=9.4 (\,\mathrm{kPa})\) and \( c_1 = 82 (\,\mathrm{kPa}) \).
| F | initial deformation gradient |
1.8.13