Isotropic models for the description of rubber materials (neo-Hookean and Mooney-Rivlin models).
More...
|
template<linalg::Matrix Mat, int n = linalg::dim< Mat >()> |
auto | funcy::incompressible_mooney_rivlin (double c0, double c1, const Mat &F) |
| Generate an "incompressible" Mooney-Rivlin material law \( W(F)=c_0\iota_1(F^T F) + c_1\iota_2(F^T F) \), where \(\iota_1\) is the first and \(\iota_2\) the second principal matrix invariant.
|
|
template<class InflationPenalty , class CompressionPenalty , linalg::Matrix Mat, int n = linalg::dim< Mat >()> |
auto | funcy::compressible_mooney_rivlin (double c0, double c1, double d0, double d1, const Mat &F) |
| Generate a compressible Mooney-Rivlin material law \( W(F)=c_0\iota_1(F^T F) + c_1\iota_2(F^T F) + d_0\Gamma_\mathrm{In}(\det(F))+d_1\Gamma_\mathrm{Co}(\det(F)) \), where \(\iota_1\) is the first and \(\iota_2\) the second principal matrix invariant.
|
|
template<linalg::Matrix Mat, class InflationPenalty , class CompressionPenalty > |
auto | funcy::create_mooney_rivlin_from_lame_constants (double lambda, double mu) |
| Generate a compressible Mooney-Rivlin material law \( W(F)=c_0\iota_1(F^T F) + c_1\iota_2(F^T F) + d_0\Gamma_\mathrm{In}(\det(F))+d_1\Gamma_\mathrm{Co}(\det(F)) \), where \(\iota_1\) is the first and \(\iota_2\) the second principal matrix invariant. The parameters \(c_0,c_1,d_0,d_1\) are chosen such that for \(F\rightarrow I\) the model asymptotically yields Hooke's model of linearized elasticity with Lam\'e constants \(\lambda,\mu\). Here \(I\) denotes the unit matrix. More...
|
|
template<linalg::Matrix Mat, class InflationPenalty , class CompressionPenalty > |
auto | funcy::create_mooney_rivlin_from_material_constants (double E, double nu) |
| Generate a compressible Mooney-Rivlin material law \( W(F)=c_0\iota_1(F^T F) + c_1\iota_2(F^T F) + d_0\Gamma_\mathrm{In}(\det(F))+d_1\Gamma_\mathrm{Co}(\det(F)) \), where \(\iota_1\) is the first and \(\iota_2\) the second principal matrix invariant. The parameters \(c_0,c_1,d_0,d_1\) are chosen such that for \(F\rightarrow I\) the model asymptotically yields Hooke's model of linearized elasticity with Young's modulus \(E\) and Poisson ratio \(\nu\). Here \(I\) denotes the unit matrix. More...
|
|
template<linalg::Matrix M, int n = linalg::dim< M >()> |
auto | funcy::incompressible_neo_hooke (double c, const M &F) |
| Generate an "incompressible" neo-Hookean material law \( W(F)=c\iota_1(F^T F) \), where \(\iota_1\) is the first principal matrix invariant .
|
|
template<linalg::Matrix M, int n = linalg::dim< M >()> |
auto | funcy::modified_incompressible_neo_hooke (double c, const M &F) |
| Generate an "incompressible" neo-Hookean material law \( W(F)=c\bar\iota_1(F^T F) \), where \(\bar\iota_1\) is the modified first principal matrix invariant.
|
|
template<class InflationPenalty , class CompressionPenalty , linalg::Matrix M, int n = linalg::dim< M >()> |
auto | funcy::compressible_neo_hooke (double c, double d0, double d1, const M &F) |
| Generate a compressible neo-Hookean material law \( W(F)=c\iota_1(F^T F)+d_0\Gamma_\mathrm{In}(\det(F))+d_1\Gamma_\mathrm{Co}(\det(F)) \), where \(\iota_1\) is the first principal matrix invariant.
|
|
template<class InflationPenalty , class CompressionPenalty , linalg::Matrix M, int n = linalg::dim< M >()> |
auto | funcy::modified_compressible_neo_hooke (double c, double d0, double d1, const M &F) |
| Generate a compressible neo-Hookean material law \( W(F)=c\bar\iota_1(F^T F)+d_0\Gamma_\mathrm{In}(\det(F))+d_1\Gamma_\mathrm{Co}(\det(F)) \), where \(\bar\iota_1\) is the modified first principal matrix invariant.
|
|
Isotropic models for the description of rubber materials (neo-Hookean and Mooney-Rivlin models).
template<linalg::Matrix Mat, class InflationPenalty , class CompressionPenalty >
auto funcy::create_mooney_rivlin_from_lame_constants |
( |
double |
lambda, |
|
|
double |
mu |
|
) |
| |
Generate a compressible Mooney-Rivlin material law \( W(F)=c_0\iota_1(F^T F) + c_1\iota_2(F^T F) + d_0\Gamma_\mathrm{In}(\det(F))+d_1\Gamma_\mathrm{Co}(\det(F)) \), where \(\iota_1\) is the first and \(\iota_2\) the second principal matrix invariant. The parameters \(c_0,c_1,d_0,d_1\) are chosen such that for \(F\rightarrow I\) the model asymptotically yields Hooke's model of linearized elasticity with Lam\'e constants \(\lambda,\mu\). Here \(I\) denotes the unit matrix.
- Parameters
-
lambda | first Lame constant |
mu | second Lame constant |
template<linalg::Matrix Mat, class InflationPenalty , class CompressionPenalty >
auto funcy::create_mooney_rivlin_from_material_constants |
( |
double |
E, |
|
|
double |
nu |
|
) |
| |
Generate a compressible Mooney-Rivlin material law \( W(F)=c_0\iota_1(F^T F) + c_1\iota_2(F^T F) + d_0\Gamma_\mathrm{In}(\det(F))+d_1\Gamma_\mathrm{Co}(\det(F)) \), where \(\iota_1\) is the first and \(\iota_2\) the second principal matrix invariant. The parameters \(c_0,c_1,d_0,d_1\) are chosen such that for \(F\rightarrow I\) the model asymptotically yields Hooke's model of linearized elasticity with Young's modulus \(E\) and Poisson ratio \(\nu\). Here \(I\) denotes the unit matrix.
- Parameters
-
E | Young's modulus |
nu | Poisson ratio |